M.SC., CHEMISTRY

SYLLABUS

FROM THE ACADMIC YEAR 2023-2024

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

CONTENTS

1.		Preamble
2.		Structure of Course
3.		Learning and Teaching Activities
4.		Tutorial Activities
5.		Laboratory Activities
6.		Field Study Activities
7.		Assessment Activities
	7.1	Assessment principles
	7.2	Assessment Details
8.		Teaching methodologies
9.		Faculty Course File
10.		Template for PG Programme in Chemistry
11.		Template for Semester
12.		Instructions for Course Transaction
13.		Testing Pattern
14.		Different Types of Courses
15.		Elective Courses (ED from other Department Experts)
16.		Skill Development Courses
17.		Institution-Industry-Interaction

Model Syllabus

18.

	LATIONS ON LEARNING OUTCOMES-BASED CURRICULUM MEWORK FOR POSTGRADUATE EDUCATION
Programme	M. Sc., Chemistry
Programme Code	
Duration	PG – 2YEARS
Programme	PO1: Problem Solving Skill
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.
	PO2: Decision Making Skill Foster analytical and critical thinking abilities for data-based decision-making.
	PO3: Ethical Value Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.
	PO4: Communication Skill Ability to develop communication, managerial and interpersonal skills.
	PO5: Individual and Team Leadership Skill Capability to lead themselves and the team to achieve organizational goals.
	PO6: Employability Skill Inculcate contemporary business practices to enhance employability skills in the competitive environment.
	PO7: Entrepreneurial Skill Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society Succeed in career endeavors and contribute significantly to society.
	PO 9 Multicultural competence Possess knowledge of the values and beliefs of multiple cultures and a global perspective.
	PO 10: Moral and ethical awareness/reasoning Ability to embrace moral/ethical values in conducting one's life.
Programme	PSO1 – Placement
Specific Outcomes (PSOs)	To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.
	PSO 2 - Entrepreneur To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

PSO3 – Research and Development

Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.

PSO4 – Contribution to Business World

To produce employable, ethical and innovative professionals to sustain in the dynamic business world.

PSO 5 – Contribution to the Society

To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

M.Sc., Chemistry Programme structure Affiliated Colleges

S.No	Paper Code			T/P	Credits	Hours/ Week	Marks			
ı		I	I Semester		I		I	E	Total	
I	23MCH1C1	Core 1	Organic Reaction mechanism I	T	5	6	25	75	100	
	23MCH1C2	Core 2	Structure and Bonding in inorganic compounds	Т	5	6	25	75	100	
	23MCH1P1	Core 3	Organic chemistry Practical	ic chemistry Practical P 4 8			25	75	100	
	23MCH1E1/	DSE-1	pharmaceutical chemistry/Nano	T	3	5	25	75	100	
	23MCH1E2		materials and Nanotechnology							
	23MCH1E3/	DSE-2	Electro chemistry/ Molecular	T	3	5	25	75	100	
	23MCH1E4		spectroscopy		• •	20		2==	= 00	
					20	30	125	375	500	
		T =: .	II Semester			1 - 1				
II	23MCH2C1	Core 4	Organic Reaction mechanism II	T	5	6	25	75	100	
	23MCH2C2	Core 5	Physical chemistry I	T	5	6	25	75	100	
	23MCH2P1	Core 6	Inorganic chemistry practical	P	4	6	25	75	100	
	23MCH2E1/ 23MCH2E2	DSE-3	Medicinal chemistry/Green Chemistry	Т	3	4	25	75	100	
	23MCH2E3/ 23MCH2E4	DSE-4	BioInorganic chemistry/ Material science	T	3	4	25	75	100	
	23MCH2S1	SEC-1	Preparation of consumer products	T	2	4	25	75	100	
					22	30	150	450	600	
			III Semester							
III	23MCH3C1	Core 7	Organic synthesis and photochemistry	Т	5	6	25	75	100	
	23MCH3C2	Core 8	Coordination chemistry I	T	5	6	25	75	100	
	23MCH3P1	Core 9	Physical Chemistry Practical	P	4	6	25	75	100	
	23MCH3P2	Core 10	Analytical Instrumentation techniques practical	P	4	6	25	75	100	
	23MCH3E1/ 23MCH3E2	DSE-5	Pharmacognosy and phytochemistry/ Biomolecules and heterocyclic Compounds	Т	4	3	25	75	100	
İ	23MCH3S1	SEC-2	Industrial Chemistry	T	2	3	25	75	100	
	23MCH3I/ 23MCH3IA		Internship/Industrial Activity	PR	2	-	25	75	100	
					26	30	175	525	700	
			IV Semester							
IV	23MCH4C1	Core 11	Coordination chemistry II	T	5	6	25	75	100	
	23MCH4C2	Core 12	Physical Chemistry II	Т	5	6	25	75	100	
ŀ	23MCH4PR	Core 13	Project with Viva-Voce		6	10	25	75	100	
ł	23MCH4E1/	DSE-6	Chemistry of Natural	T	4	4	25	75	100	
	23MCH4E2		products/Polymer Chemistry	_		-	-			
	23MCH4S1	SEC-3	Chemistry for advanced research studies	Т	2	4	25	75	100	
ł	23MEA4	2200	Extension Activity	P	1		25	75	100	
	231111111		Entonoion recurity	1	23	30	150	450	600	
			Total		91 +EC		600	1800	2400	

Core Courses

DSE – Discipline Specific Elective –Give more option to the student (Choice) and it may be conducted by parallel sessions.

SEC- Skill Enhancement Course

Dissertation- Marks -Vivo-voce (50) + thesis (100) + internal (50) = 200 Internship report -Marks -Vivo-voce (25) + reports (50) + internal (25) = 100

*AEC- Ability Enhancement Courses (may be included by altering the surplus credits and hours of other courses)

Title of the	ORGANIC	REACTION ME	CHA	NISM – I							
Course											
Paper No.	CC1										
Category	Core	Year	I	Credits 5 Course Code 23							
		Semester	I				H1C1				
Instructional	Lecture	Tutorial	Lal	Practice		Total					
hours per week	5	1	-			6					
Prerequisites	•	ots of organic cher									
Objectives of the		nd the feasibility a				_					
course		end the techniques									
		nd the concept of s and appreciate to									
		tion mechanisms.	iie ui	ilerences inv	oiveu i	n the various typ	068 01				
		asible synthetic ro	utes	for the prepar	ration o	f organic compou	nds.				
UNIT-I:		Determination									
	The transition	on state, Reaction	coor	dinate diagra	ams, Tł	nermodynamic an	d kinetic				
	requirements	of reactions:	Ham	mond postu	ılate. 1	Methods of det	ermining				
	mechanism:	non-kinetic m	ethod	ls - produ	ct ana	lysis, determina	ation of				
	intermediate	s-isolation, detect	ion, a	and trapping.	Cross-	over experiments,	, isotopic				
	labelling, iso	tope effects and s	tereo	chemical evid	dences.	Kinetic methods	- relation				
	of rate and	mechanism. Effe	ect of	f structure o	n react	ivity: Hammett	and Taft				
	equations. L	inear free energy	y rela	ationship, pa	rtial ra	te factor, substit	uent and				
	reaction cons										
UNIT-II:	Aromatic a	nd Aliphatic Ele	ectrop	philic Substi	tution:	Aromaticity: An	romaticity				
		d, non-benzenoid		•	_						
	_	substitution: Or			•						
	_	benzene and halo					-				
		rosation and diazo			-						
	_	ectrophiles: chlo					-				
	Friedel-Crafts alkylation, acylation and arylation reactions. Aliphatic electrophilic substitution Mechanisms: SE2 and SEi, SE1- Mechanism and evidences.										
	substitution	Mechanisms: SE2	and	SEi, SE1- Me	echanis	m and evidences.					
UNIT-III:	Aromatic a	and Aliphatic	Nucle	ophilic Sub	stitutio	n:Aromatic nuc	leophilic				
		Mechanisms - S _N		•			1				
	- Evidence	es - Reactivity	, E	ffect of s	tructure	e, leaving gro	up and				
	attackingnucleophile. Reactions: Oxygen and Sulphur-nucleophiles, Bucherer and										
	Rosenmund reactions, von Richter, Sommelet- Hauser and Smiles										
		rearrangements. S _N 1, ion pair, S _N 2 mechanisms and evidences. Aliphatic									
		substitutions at a					and vinyl				
		$S_N 2$, $S_N i$, and $S_E 1$									
LINUT IX		instein relationsh									
UNIT-IV:		istry-I: Introducti		•		•	a dua ta				
	– axis, pian	e, center, alternat	ung a	ixis of symn	neiry. (optical isomerish	i due to				

	asymmetric and dissymmetric molecules with C, N, S based chiral centers. Optical
	purity, prochirality, enantiotopic and diastereotopic atoms, groups, faces, axial and
	planar chirality, chirality due to helical shape, methods of determining
	theconfiguration. Racemic modifications: Racemization by thermal, anion, cation,
	reversible formation, epimerization, mutarotation. D, L system, Cram's and
	Prelog's rules: R, S-notations, proR, proS, side phase and re phase Cahn-Ingold-
	Prelog rules, absolute and relative configurations. Configurations of allenes,
	spiranes, biphenyls, cyclooctene, helicene, binaphthyls, ansa and cyclophanic
	compounds, exo-cyclic alkylidene-cycloalkanes. Topicity and prostereoisomerism,
	chiral shift reagents and chiral solvating reagents. Criteria for optical purity:
	Resolution of racemic modifications, asymmetric transformations, asymmetric
	synthesis, destruction. Stereoselective and stereospecific synthesis.
UNIT-V:	Stereochemistry-II: Conformation and reactivity of acyclic systems,
	intramolecular rearrangements, neighbouring group participation, chemical
	consequence of conformational equilibrium - Curtin-Hammett Principle. Stability
	of five and six-membered rings: mono-, di- and polysubstituted cyclohexanes,
	conformation and reactivity in cyclohexane systems. Fused and bridged rings:
	bicyclic, poly cyclic systems, decalins and Brett's rule. Optical rotation and optical
	rotatory dispersion, conformational asymmetry, ORD curves, octant rule,
	configuration and conformation, Cotton effect, axial haloketone rule and
	determination of configuration.
Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this course	Professional Communication and Transferable skills.
Recommended	1. J. March and M. Smith, Advanced Organic Chemistry, 5 th edition, John-
Text	Wiley and Sons.2001.
	2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt,
	Rinehartand Winston Inc., 1959.
	3. P.S.Kalsi, Stereochemistry of carbon compounds, 8 th edition, New Age International Publishers, 2015.
	4. P. Y. Bruice, Organic Chemistry, 7 th edn, Prentice Hall, 2013.
	5. J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2 nd edition, Oxford
	University Press, 2014.
Reference Books	1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A and B,
	5 th edition, Kluwer Academic / Plenum Publishers, 2007.
	2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.
	3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.

	 E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw Hill, 2000. I. L. Finar, Organic chemistry, Vol-1 & 2, 6th edition, Pearson Education
	3. 1. L. Finar, Organic chemistry, Vol-1 & 2, 6 edition, Pearson Education Asia, 2004.
Website and	1.https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	chemistry/organic
source	2. https://www.organic-chemistry.org/

Students will be able

CLO1: To recall the basic principles of organic chemistry.

CLO2: To understand the formation and detection of reaction intermediates of organic reactions.

CLO3: To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.

CLO4: To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.

CLO5:To design and synthesize new organic compounds by correlating the stereochemistry of organic compounds.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

Strong - 3 Medium-2 Low-1

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

In order to avoid pull the score down of each PO, it is suggested that the usage L-Low (1) to the minimum.

The S, M, L is based on the course outcome. The mapping is based on the revised Bloom's Taxonomy Verbs used to describe your course outcome.

- Remember and Understanding Lower level
- Apply and Analyze Medium Level
- Evaluate and Create Strong Level

Title of the Course	STRUCTURE AND BONDING IN INORGANIC COMPOUNDS								
Paper No.	CC2								
Category	Core	Year	I	Credits	5	Course Code	23MCH1C2		
		Semester	I						
Instructional hours	Lecture	Tutorial	Lab	Practice		Total			
per week	5	1	-			6			
Prerequisites	Basic con	cepts of Ino	gani	c Chemistr	y				
Objectives of the				1		n group compoun			
course				_		ural aspects of io	nic crystals.		
						copic techniques. lefects in ionic cry	vatala		
		e the structur				lefects in forme cr	ystais.		
UNIT-I:						clusters: VB th	eory – Effect of		
	lone pair	and electron	egativ	ity of aton	ns (Be	ent's rule) on the	geometry of the		
	molecules	; Structure	of	silicates -	app	olications of Pa	ulings rule of		
	electroval	ence - isomo	rphou	ıs replacem	ents i	n silicates – orth	o, meta and pyro		
	silicates -	one dimens	ional,	two dimer	nsiona	al and three-dime	nsional silicates.		
	Structure	of silicones,	Struc	ctural and b	ondii	ng features of B-	N, S-N and P-N		
	compound	ds; Poly acid	ds –	types, exam	mples	and structures;	Borane cluster:		
						*	ranes, hetero and		
				_		structure of bora	ne cluster; main		
	<u> </u>	sters –zintl io							
UNIT-II:		•		•		•	imple, hexagonal		
							, Crystal systems		
				• •			olanes and screw		
		•	•			e energetics: Latt	••		
LINITE III.						n, Madelung con			
UNIT-III:		·				•	al systems: Rock tile and anatase,		
	·			*		· · · · · · · · · · · · · · · · · · ·	· ·		
					_		nverse types and elt and solution		
	_		•			and examples.	en and solution		
INIT IV.	` •			, ,	•	ay diffraction tec	hnique: Proga's		
UNIT-IV:						rinciple and			
						Phase purity, So			
	_					bsence of reflec			
				•		tation and applic	*		
	diffaction	i cennique -	Prii	erpre, msu	unich	appin	Junoii. Liccuoii		

	microscopy – difference between optical and electron microscopy, theory, principle, instrumentation, sampling methods and applications of SEM and TEM.
UNIT-V:	Band theory and defects in solids Band theory – features and its application of conductors, insulators and semiconductors, Intrinsic and extrinsic semiconductors; Defects in crystals – point defects (Schottky, Frenkel, metal excess and metal deficient) and their effect on the electrical and optical property, laser and phosphors; Linear defects and its effects due to dislocations.
Extended Professional	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a part of internal component only, Not to be included in the external examination question paper)	(To be discussed during the Tutorial hours)
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended Text	 A R West, Solid state Chemistry and its applications, 2ndEdition(Students Edition), John Wiley & Sons Ltd., 2014. A K Bhagi and G R Chatwal, A textbook of inorganic polymers, HimalayaPublishing House, 2001. L Smart, E Moore, Solid State Chemistry – An Introduction, 4th Edition,CRC Press, 2012. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders company:Philadelphia, 1977. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry; 4th ed.;Harper and Row: NewYork, 1983.
Reference Books	 D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and Modelsin Inorganic Chemistry, 3rd Ed, 1994. R J D Tilley, Understanding Solids - The Science of Materials, 2nd edition, Wiley Publication, 2013. C N R Rao and J Gopalakrishnan, New Directions in Solid State Chemistry, 2nd Edition, Cambridge University Press, 199. T. Moeller, Inorganic Chemistry, A Modern Introduction; John Wiley:New York, 1982. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic Chemistry; 3rded.; Oxford University Press: London, 2001.
Website and e-learning source	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-fall- 2018/video_galleries/lecture-videos/

Students will be able

CO1: Predict the geometry of main group compounds and clusters.

CO2: Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.

CO3: Understand the various types of ionic crystal systems and analyze their structural features.

CO4: Explain the crystal growth methods.

CO5:To understand the principles of diffraction techniques and microscopic techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of Course	ORGANI	C CHEMIS	TRY	PRACTIO	CAL			
Paper No.	CC3							
Category	Core	Year	I	Credits	4	Course Code	23MCH1P1	
		Semester	I					
Instructional hours	Lecture	Tutorial		Practice		Total		
per week	-	1	7			8		
Prerequisites		cepts of org						
	To understand the concept of separation, qualitative analysis and preparation of organic compounds.							
	1	o analytical s and ternary o			ing of	chemical reager	nts for separation	
	To analyz them suita	•	ted or	rganic com	npone	nts systematicall	y and derivatize	
	To constru two stages		xperin	nental setuj	o for t	he organic prepa	rations involving	
	To expering processing		nt puri	ification an	d dry	ing techniques for	or the compound	
UNIT-I:	Separatio	n and analy	sis:					
						nt mixtures.		
UNIT-II:	Estimation		e com	ponent mix	tures	(Demonstration	only)	
UNII-II:	Estimation	a)	F	stimation of	of Phe	nol (bromination)	
		b)				line (bromination		
		,				thyl ketone (iodii	·	
		,	d)		•	Glucose (redox)	37	
		e)	Est	imation of	Ascor	bic acid (iodimet	cry)	
		f) E	stimat	ion of Aroi	natic	nitro groups (red	uction)	
		g)) E	Estimation of	of Gly	cine (acidimetry))	
		h)				malin (iodimetry)	·	
		·				oup in ester (alkal	* ·	
		j)			-	yl group (acetyla		
	TD 4	<u>k)</u>		mation of A	Amino	group (acetylati	on)	
UNIT-III:	1 wo stage	e preparatio		-Bromoaco	etanili	ide from aniline		
			b)	<i>p</i> -Nitroani	line fr	rom acetanilide		
			c) 1,3	,5-Tribrom	oben	zene from aniline		
		d) A	Acetyl	salicyclic a	acid fi	rom methyl salicy	ylate	

	e) Benzilic acid from benzoin
	f) <i>m</i> -Nitroaniline from nitrobenzene
	g) <i>m</i> -Nitrobenzoic acid from methyl benzoate
Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferable skills.

Students will be able:

CO1: To recall the basic principles of organic separation, qualitative analysis and preparation.

CO2: To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.

CO3: To determine the characteristics of separation of organic compounds by various chemical reactions.

CO4: To develop strategies to separate, analyze and prepare organic compounds.

CO5:To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.

CO-PO Mapping (Course Articulation Matrix)

				8	(
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

SCHEME OF EVALUATION

Internal marks: 25	External marks: 75
	For examination the following pattern has to be
	followed.
	(A) Either separation and analysis with double stage
	preparation
	(OR)
	(B) Estimation with double stage preparation
Estimation: 9marks	
Analysis: 9 marks	A) Separation and analysis with double stage
Preparation: 7 marks	preparation
- 1 - put ut on v / 11 - 12 - 12	Anaysis (Report with suitable procedure):35 marks
	r (· p · · · · · · · · · · · · · · · · ·
	Separation: 5 marks
	Alipahtic/aromatic:3 marks
	Saturated/unsaturated: 3 marks
	Elements present: 6 marks
	Functional groups :12 marks
	Derivative: 6 marks
	Preparation :25
	procedure -10: preparation :15
	Viva: 5
	Record :10
	B) Estimation with double stage preparation
	Estimation: 35 marks
	procedure-10
	Error Up to 2% -35
	3%-25
	4 %-15
	>4%-10
	Preparation :25 marks
	procedure -10: preparation :15 marks
	Viva: 5
	Record:10

Title of the Course	PHARMACEUTICAL CHEMISTRY								
Paper No.	DSE 1 A								
Category	DSE	Year	I	Credits	3	Course Code	23MCH1E1		
		Semester	I						
Instructional hours	Lecture	Tutorial	Lab	Practice		Total			
per week	4	1	-			5			
Prerequisites	Basic kno	wledge on d	rugs	and doses		1			
Objectives of the	To underst	and the adva	nced	concepts of	f phar	maceutical chem	istry.		
course				-		ns of various drug			
		e students to l	know	the importa	ance a	s well the consequ	uences of various		
	drugs.	nowledge on	the w	arious anal	veie a	nd techniques.			
		_				ctural activities.			
UNIT-I:							perties of drug		
	molecule:	physical pr	opert	ties. Refra	ctive	index- Definiti	on, explanation,		
	formula,	importance,	deter	mination,	specif	fic & molar ret	fraction. Optical		
	activity\ro	tation- mono	chron	natic & pol	ychro	matic light, optic	al activity, angle		
	of rotation	n, specific 1	rotati	on exampl	es, n	neasurement of	optical activity.		
	Dielectric	constant & I	nduce	ed Polariza	tion-	Dielectric consta	nt explanation &		
		_	•	•		•	ction, Definition,		
		Applications, concept of viscosity, Newton's law of flow, Kinematic, Relative,							
					•	•	, non-Newtonian		
	•			•			flow. Viscosity		
		ents- selection	on of	viscomete	er for	Newtonian and	non-Newtonian		
	system.								
UNIT-II:	_						eutron activation		
		-		-			n counters: Body		
	_			•		•	various types of		
	_			•		•	stherapeutics, for		
				-		-	and drug action. (b) solubility (c)		
	_			•	_	ution coefficient,	(b) solubility (c)		
UNIT-III:		tivity, (d) deg				atroduction to dr	ug dosage Forms		
UNII-III;	_			_			ig Regulation and		
	_						ig nomenclature,		
	_	_				_	a dosage form,		
				_	_		ct development.		
			_		_		n – Definition of		
	Common						eias formularies,		
			5 10	5-14-1011 dil		, primirinacopo			

	sources of drug, drug nomenclature, routes of administration of drugs
	products, need for a dosage form, classification of dosage forms.
UNIT-IV:	Development of new drugs: Introduction, procedure followed in drug design, the research for lead compounds, molecular modification of lead compounds. Structure-Activity Relationship (SAR): Factors effectingbioactivity, resonance, inductive effect, isoterism, bioisosterism, spatial considerations, biological properties of simple functional groups, theories of drug activity, occupancy theory, rate theory, induced-fit theory,4.3 Quantitative structure activity relationship (QSAR): Development of QSAR, drug receptor interactions, the additivity of group contributions, physico-chemical parameters, lipophilicity parameters, electronic parameter, ionization constants, steric parameters, chelation parameters, redox potential, indicator-variables.
UNIT-V:	Computers in Pharmaceutical Chemistry: Need of computers for chemistry. Computers for Analytical Chemists-Introduction to computers: Organization of computers, CPU, Computer memory, I/O devices, information storage, software components. Application of computers in chemistry: Programming in high level language (C+) to handle various numerical methods in chemistry – least square fit, solution to simultaneous equations, interpolation, extrapolation, data smoothing, numerical differentiation and integrations.
Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferable skills.
Recommended	1. Physical Chemistry- Bahl and Tuli.
Text	 Text Book of Physical Pharmaceutics, IInd edition, Vallabh Prakashan-C.V.S. Subramanyam. Medicinal Chemistry (Organic Pharmaceutical Chemistry), G.R Chatwal, Himalaya Publishing house. Instrumental method of Analysis: Hubert H, Willard, 7th edition. Textbook of Pharmaceutical Chemistry by, Jayshree Ghosh, S. Chand & company Ltd. Pharmaceutical Chemistry by Dr. S. Lakshmi, Sultan chand & Sons.
Reference Books	 Computers in chemistry, K.V. Raman, Tata Mc.Graw-Hill, 1993. Computers for Chemists, S.K Pundir, Anshu bansal, A pragate prakashan.,2 nd edition, New age international (P) limited, New Delhi. Physical Pharmacy and Pharmaceutical Sciences by Martins, Patrick J.Sinko, Lippincott. William and Wilkins. Cooper and Gunn's Tutorial Pharmacy ,6th edition by S.J. Carter, CBS

	Publisher Ltd.
	5. Ansels pharmaceutical Dosage forms and Drug Delivery System by Allen
	6. Popvich and Ansel, Indian edition-B.I. Publication Pvt. Ltd.
Website and	https://www.ncbi.nlm.nih.gov/books/NBK482447/
e-learning source	https://training.seer.cancer.gov/treatment/chemotherapy/types.html

Students will be able:

CO1: To identify the suitable drugs for various diseases.

CO2: To apply the principles of various drug action and drug design.

CO3: To acquire the knowledge on product development based on SAR.

CO4: To apply the knowledge on applications of computers in chemistry.

CO5:To synthesize new drugs after understanding the concepts SAR.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	NANO M	ATERIALS	AND	NANO T	ECH	NOLOGY			
Paper No.	DSE -1 B								
Category	DSEC	Year	I	Credits	3	Course Code	23MCH1E2		
		Semester	Ι						
Instructional hours	Lecture	Tutorial	Lab	Practice	•	Total			
per week	4	1	-			5			
Prerequisites	Basic kno	wledge of cr	ystall	lography a	nd m	aterial science			
Objectives of the						and nano technol			
course						erials and their pr			
				•		ly important nanc			
	technologi		eterist	ics of vario	ous na	nno materials syn	tnesized by new		
	_		ites fo	or synthetic	allv u	sed new nano ma	terials.		
UNIT-I:							tion- role of size,		
						-	p, Top–Down,		
	consolidat	ion of Nano	pow	ders. Featu	res o	f nanostructures.	Background of		
	nanostruct	ures. Techn	iques	of synthe	esis (of nanomaterials	s, Tools of the		
	nanoscien	ce. Application	ons of	f nanomate	ials a	and technologies.			
UNIT-II:	Bonding a	nd structure	of the	nanomater	ials, l	Predicting the Ty	pe of Bonding in		
	a Substan	ce crystal str	ructur	e. Metallic	nano	oparticles, Surfac	ces of Materials,		
	Nanopartio	ele Size and	Prope	erties. Syntl	nesis-	Physical and che	emical methods -		
	inert gas c	ondensation,	arc c	lischarge, la	aser a	blation, sol-gel, s	solvothermal and		
	hydrothern	nal-CVD-typ	es, m	etallo orga	nic, p	lasma enhanced,	and low-pressure		
	CVD. Mic	rowave assis	ted ar	nd electroch	nemic	al synthesis.			
UNIT-III:	Mechanica	al properties	of ma	aterials, the	ories	relevant to mech	anical properties.		
	Technique	s to study r	necha	anical prop	erties	of nanomateria	ls, adhesion and		
	friction, th	nermal prope	erties	of nanoma	terial	s Nanoparticles:	gold and silver,		
	metal oxid	es: silica, iro	n oxio	de andalum	ina - s	synthesisandprop	erties.		
UNIT-IV:				•		tivity, Classificat			
		•	_			electronic proper			
	Classificat	ion of m	agnet	ic phenor	nena.	Semiconductor	r materials –		
	classificati	on-Ge, Si,	GaAs	s, SiC, Ga	N, G	aP, CdS,PbS. I	dentification of		
						l effect - quantum			
		-			_	earrier density.			
			unctio	on as transi	stors	and rectifiers, p	photovoltaic and		
	photogalva								
UNIT-V:			_			on of nanopartic			
						sis, and propertie			
	•			•	•		ites-applications.		
			1, TE	M and AFI	M -pr	inciple, instrume	ntation and		
	application	ıs.							

Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	(10 be discussed during the Tutorial notifs)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferable skills.
Recommended	S.Mohan and V. Arjunan, Principles of Materials Science, MJP
Text	Publishers, 2016.
Text	1 dolishers, 2010.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International Union
	of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge University
	Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to
	Materials Science for Engineers. 6 th ed., PEARSON Press, 2007.
Reference Books	1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP
	Publishers, 2016.
	 Arumugam, Materials Science, Anuradha Publications, 2007. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge University
	Press,2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara,
	Introduction toMaterials Science for Engineers. 6 th ed., PEARSON
W/-1	Press, 2007.
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html.
e-learning source	2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf .
I	

Students will be able:

CO1: To explain methods of fabricating nanostructures.

CO2: To relate the unique properties of nanomaterials to reduce dimensionality of the material.

CO3: To describe tools for properties of nanostructures.

CO4: To discuss applications of nanomaterials.

CO5:To understand the health and safety related to nanomaterial.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

 $Level\ of\ Correlation\ between\ PSO's\ and\ CO's\ 3-Strong, 2-Medium, 1-Low$

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course	ELECTROCHEMISTRY													
Paper No.	DSE -2 A													
Category	DSEC	Year	I	Credits	3	Course Code	23MCH1E3							
		Semester	I											
Instructional hours	Lecture	Tutorial	Lab	Practice		Total								
per week	4	1	-	- 5										
Prerequisites	Basic know	wledge of ele	ctrocl	hemistry		<u> </u>								
Objectives of the					olytes	in terms of con	nductance, ionic							
course		e, interaction			•		,							
						•	ferent models.To							
		the mechani				nd over potential								
						reactions. ges and its appli	cations in							
		lytical technic		jes of over	VOIL	iges and its appli	cations in							
UNIT-I:		<u> </u>		limitations	Van	't Hoff factor	and its relation to							
ONIT-1.			•				ctivity, mean ionic							
	_						ic strength, Debye							
				•		•	strong electrolytes							
		•	_	•		~	interactions. Born							
			•				ye-Huckel limiting							
	_	•	-				is and applications.							
	_ ^ ^				•	•	strong electrolyte-							
	qualitative	and quanti	itative	verificati	on a	nd limitations. E	Evidence for ionic							
	atmospher	e. Ion associa	ation	and triple i	on for	mations.								
UNIT-II:	Electrode	-electrolyte i	interf	ace: Interf	acial 1	ohenomena -Evic	lences for electrical							
		-				•	s, Electrocapillary							
	phenomen	a - Lippma	ann e	equation e	lectro	capillary curv	es. Electro-kinetic							
	phenomen	a electro-os	mosis	s, electrop	hores	is, streaming a	and sedimentation							
	potentials,	colloidal and	d poly	electrolyt	es. St	ructure of double	layer: Helmholtz -							
		-					ayer. Zeta potential							
		ial at zero ch												
UNIT-III:							vior of electrodes:							
					_		dCathodic currents,							
			_				arizable and non-							
	1 *					•	r potential. Rate of							
					_	•	ons. Butler-Volmer							
	_	-		-		•	rrent density and nmetry factor and							
	•	efficient Taf		•	• •	•	innerry factor and							
UNIT-IV:							nulti- step electrode							
01111-111			-		•		. Rate determining							
				-		-	er coefficients, its							
	-	_			_		Electro-chemical							
	_						overage. Reduction							
							emical and electro							
							tials. Evolution of							
	,,,	, 6		1 -	-	oxygen and hydrogen at different pH. Pourbiax and Evan's diagrams.								

UNIT-V:	Concentration Polarization, Batteries and Fuel cells: Modes of Transport of
	electro active species - Diffusion, migration and hydrodynamic modes. Role of
	supporting electrolytes. Polarography-principle and applications. Principle of
	square wave polarography. Cyclic voltammetry- anodic and cathodic stripping
	voltammetry and differential pulse voltammetry. Sodium and lithium-ion
	batteries and redox flow batteries. Mechanism of charge storage: conversion and
	alloying. Capacitors- mechanism of energy storage, charging at constant current
	and constant voltage. Energy production systems:
	Cells: classification, alkaline fuel cells, phosphoric acid fuel cells, high
	temperature fuel cells.
Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferable skills.
Recommended	1. D. R. Crow, Principles and applications of electrochemistry, 4thedition,
Text	Chapman &Hall/CRC, 2014.
	2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011.
	3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New
	Delhi, 2008.
	4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S.
	Raghavan, Electrochemistry-Principles and applications, S. Viswanathan
	Printers, Chennai, 2007.
	5. Joseph Wang, Analytical Electrochemistry, 2 nd edition, Wiley, 2004.
Reference Books	1. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B,
	Springer, Plenum Press, New York, 2008.
	2. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A, Springer, Plenum Press, New York, 2008.
	3. Philip H. Rieger, Electrochemistry, 2 nd edition, Springer, New York, 2010.
	4. L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977.
	5. K.L. Kapoor, A Text book of Physical chemistry, volume-3,
	Macmillan,2001.
Website and	1. https://www.pdfdrive.com/modern-electrochemistry-e34333229.
e-learning source	
L Canaga Lagunina On	stoomes (for Manning with DOs and DSOs)

Students will be able:

CO1: To understand the behaviour of electrolytes in solution and compare the structures of electrical double layer of different models.

CO2: To predict the kinetics of electrode reactions applying Butler-Volmer and Tafel equations

CO3: To study different thermodynamic mechanism of corrosion,

CO4: To discuss the theories of electrolytes, electrical double layer, electrodics and activitycoefficient of electrolytes

CO5:To have knowledge on storage devices and electrochemical reaction mechanism.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3-Strong, 2-Medium, 1-Low

Title of the Course	MOLECU	JLAR SPEC	TRO	SCOPY							
Paper No.	DSE - 2 B										
Category	DSE	Year	I	Credits	3	Course Code	23MCH1E4				
- -		Semester	I								
Instructional hours	Lecture	Tutorial	Lab	Practice		Total	1				
per week	4	1	-			5					
Prerequisites	Basic kno	wledge of sp	ectro	scopy							
Objectives of the					n and	vibrations on th	ne spectra of the				
course	To understand the influence of rotation and vibrations on the spectra of the polyatomic molecules.										
	To study the principle of Raman spectroscopy, ESR spectroscopy, EPR										
						lass spectroscopy					
							to interpret the				
						c transitions.					
						•	s of splitting and OSY, HETCOR,				
	NOESY.	patierns usir	ig co	ii Ciation t	Cilling	jues such as ev	osi, ileicok,				
	To carry out the structural elucidation of molecules using different spectral										
	techniques					8	r				
UNIT-I:			an Sp	ectroscop	y: Ro	tational spectra	of diatomic and				
							effect of isotopic				
							Raman effect,				
	polarizability as a tensor, polarizability ellipsoids, quantum theory of the Raman										
	effect, Pure rotational Raman spectra of linear and asymmetric top molecules, Stokes and anti-Stokes lines. Vibrational Raman spectra, Raman activity of										
	vibrations, rule of mutual exclusion, rotational fine structure-O and S										
	branches, Polarization of Raman scattered photons.										
UNIT-II:	Vibrational Spectroscopy: Vibrations of molecules, harmonic and										
	anharmonic oscillators- vibrational energy expression, energy level diagram,										
	vibrational wave functions and their symmetry, selection rules, expression for										
	the energies of spectral lines, computation of intensities, hot bands, effect of										
	isotopic substitution. Diatomic vibrating rotor, vibrational-rotational spectra of										
	diatomic molecules, P, R branches, breakdown of the Born-Oppenheimer										
	approximation. Vibrations of polyatomic molecules – symmetry properties, overtone and combination frequencies. Influence of rotation on vibrational										
	spectra of polyatomic molecule, P, Q, R branches, parallel and perpendicular										
	vibrations of linear and symmetric top molecules.										
UNIT-III:	Electronic	c spectrosco	py: E	lectronic S	pectro	scopy: Electroni	c spectroscopy of				
		,					nd predissociation				
	_						es. Photoelectron				
	_		_	_		n spectra of simp					
							s: Laser action,				
	systems.	i iliveisioli, j	лоре	ines of las	ci iau	nation, examples	s of simple laser				
UNIT-IV:		l ESR spect	rosco	pv: Chem	ical sh	nift, Factors influ	nencing chemical				
							of shielding and				
							coupling of AB				
							oin interactions:				
	· ·	_		_			nal, germinal and				
							r effect (NOE),				
			_				es. 13CNMR and				
		_		-			NMR – COSY,				
	NUESY.	muoduction	w 3	11, 191 N	IVIK.	ESK spectrosco	py Characteristic				

	features of ESR spectra, line shapes and line widths; ESR spectrometer. The g value and the hyperfine coupling parameter (A), origin of hyperfine interaction. Interpretation of ESR spectra and structure elucidation of organic radicals using ESR spectroscopy; Spin orbit coupling and significance of g-tensors, zero/non-zero field splitting, Kramer's degeneracy, application to transition metal complexes (having one to five unpaired electrons) including biological molecules and inorganic free radicals. ESR spectra of magnetically dilute samples.
UNIT-V:	Mass Spectrometry, EPR and Mossbauer Spectroscopy: Ionization techniques- Electron ionization (EI), chemical ionization (CI), desorption ionization (FAB/MALDI), electrospray ionization (ESI), isotope abundance, molecular ion, fragmentation processes of organic molecules, deduction of structure through mass spectral fragmentation, high resolution. Effect of isotopes on the appearance of mass spectrum. EPR spectra of anisotropic systems - anisotropy in g-value, causes of anisotropy, anisotropy in hyperfine coupling, hyperfine splitting caused by quadrupole nuclei. Zero-field splitting (ZFS) and Kramer's degeneracy. Applications of EPR to organic and inorganic systems. Structural elucidation of organic compounds by combined spectral techniques. Principle of Mossbauer spectroscopy: Doppler shift, recoil
Extended	energy. Isomer shift, quadrupole splitting, magnetic interactions. Applications: Mossbauer spectra of high and low-spin Fe and Sn compounds.
Professional	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	(10 be discussed during the 1 diorial nodis)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferable skills.
Recommended	1. C. N. Banwell and E. M. McCash, Fundamentals of Molecular
Text	Spectroscopy, 4 th Ed., Tata McGraw Hill, New Delhi, 2000.
	2. R. M. Silverstein and F. X. Webster, <i>Spectroscopic Identification of Organic Compounds</i> , 6 th Ed., John Wiley & Sons, New York, 2003.
	3. W. Kemp, <i>Applications of Spectroscopy</i> , English Language Book Society, 1987.
	4. D. H. Williams and I. Fleming, <i>Spectroscopic Methods in Organic Chemistry</i> , 4 th Ed., Tata McGraw-Hill Publishing Company, New Delhi, 1988.
	5. R. S. Drago, <i>Physical Methods in Chemistry</i> ; Saunders: Philadelphia, 1992.

Reference Books	1. P.W. Atkins and J. de Paula, <i>Physical Chemistry</i> , 7 th Ed., Oxford UniversityPress, Oxford, 2002.
	2. N. Levine, <i>Molecular Spectroscopy</i> , John Wiley & Sons, New York, 1974.
	3. Rahman, Nuclear Magnetic Resonance-Basic Principles, Springer-Verlag, New York, 1986.
	4. K. Nakamoto, <i>Infrared and Raman Spectra of Inorganic and coordinationCompounds</i> , PartB: 5th ed., John Wiley& Sons Inc., New York, 1997.
	5. J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnetic Resonance</i> ; Wiley Interscience, 1994.
Website and	1. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
e-learning source	2. https://www.digimat.in/nptel/courses/video/104106122/L14.html

Students will be able:

CO1: To understand the importance of rotational and Raman spectroscopy.

CO2: To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules.

CO3: To evaluate different electronic spectra of simple molecules using electronic spectroscopy.

CO4: To outline the NMR, ¹³C NMR, ^{2D} NMR – COSY, NOESY, Introduction to ¹³¹P, ¹⁹F NMR and ESR spectroscopic techniques.

CO5:To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopy techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	ORGANIC R	REACTION ME	CHA	NISM-II						
Course Paper No.	CC4									
	Core	Voor	I	Credits	5	Course	23MCH2C1			
Category	Core	Year Semester	II	Credits	3	Course Code	251/10/1201			
Instructional	Lecture	Tutorial		Practice Practice		Total				
Į.	5	1 utoriai	Lau	Fractice		6				
hours per week	-	-	- 1	.4		0				
Prerequisites	Basic knowledge of organic chemistry To understand the concept of aromaticity in benzenoid, non-benzenoid, heterocyclic									
Objectives of	and annulene		omati	city in benzer	ioia, no	on-benzenoi	a, neterocyclic			
the course		the mechanism	invol	ved in variou	s types	of organic	reactions with			
	evidences.	the meenamsm	mvoi	vea iii vaiioa	з турса	or organic	reactions with			
		the applications	of syı	nthetically im	portan	t reagents.				
	To correlate th	ne reactivity betw	een a	liphatic and a	romati	c compound	S.			
		thetic routes for								
UNIT-I:		and Free Radi								
		Syn- and anti								
		d Saytzeff rules		•			•			
		and medium. St		-		-	-			
	" " " " " " " " " " " " " " " " " " "	lytic elimination.	_							
	l	ermal and photoc					•			
		of free radical					•			
	polymerization	n, addition, halo	ogenat	ions, aromat	ic sub	stitutions, re	earrangements.			
		eactivity on aliph	natic,	aromatic subs	strates,	reactivity in	n the attacking			
	radical, effect	of solvent.								
UNIT-II:		Reduction Read								
		rogen transfer,								
		pling reactions. I								
	• •	selenium dioxid		•						
	1	, manganese d		•		*				
		alkyl groups,					_			
	_	C-C bonds - clea	-				•			
	•	tion, oxidation	-							
	1	ern oxidation) carbodiimide (D		-			-			
	'	r, Clemmenson,		,						
		adyen-Steven's				•				
	•	n with cyclic syst		_						
UNIT-III:	· ·	ents: Rearrange								
01111-111.	_	d semi-pinacolor								
	_	wein, Demjanov		_			· ·			
	_	lff rearrangemen		-						
		rtius, Schmidt, I		_			nent introgen.			
		arrangements. Re					wgen: Raever			
	Deckinaiiii 168	mangements. Re	arran	3011101118 10 61	CCHOIL	deficient 0X	ygen. Daeyer-			

	Villiger oxidation and Dakin rearrangements. Rearrangements to electron rich atom: Favorskii, Quasi-Favorskii, Stevens, [1,2]-Wittig and [2,3]-Wittig rearrangements. Fries and Photo Fries rearrangement. Intramolecular rearrangements – Claisen, abnormal Claisen, Cope, oxy-Cope Benzidine rearrangements.
UNIT-IV:	Addition to Carbon Multiple Bonds: Mechanisms: (a) Addition to carbon-carbon multiple bonds- Addition reactions involving electrophiles, nucleophiles, free radicals, carbenes and cyclic mechanisms-Orientation and reactivity, hydrogenation of double and triple bonds, Michael reaction, addition of oxygen and Nitrogen; (b) Addition to carbon-hetero atom multiple bonds: Mannich reaction, acids, esters, nitrites, addition of Grignard reagents, Wittig reaction, Prinsreaction. Stereochemical aspects of addition reactions. Addition to Carbon-Hetero atom Multiplebonds: Addition of Grignard reagents, organozinc and organolithium reagents to carbonyl and unsaturated carbonyl compounds. Mechanism of condensation reactions involving enolates –Stobbe reactions. Hydrolysis of esters and amides, ammonolysis ofesters.
UNIT-V:	Reagents and Modern Synthetic Reactions: Lithium diisopropylamine (LDA), Azobisisobutyronitrile (AIBN), Sodium cyanoborohydride (NaBH ₃ CN), <i>meta</i> -Chloroperbenzoic acid (m-CPBA), Dimethyl aminiopyridine (DMAP), n-Bu ₃ SnD, Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene (DBU), Diisopropylazodicarboxylate (DIAD), Diethylazodicarboxylate (DEAD), <i>N</i> -bromosuccinimide (NBS), Trifluoroacetic acid (TFA), Tetramethyl piperiridin-1-oxyl (TEMPO), Phenyltrimethylammonium tribromide (PTAB). Diazomethane and Zn-Cu, Diethyl maleate (DEM), Copper diacetylacetonate (Cu(acac) ₂), TiCl ₃ , NaIO ₄ , Pyridinium chlorochromate (PCC), Pyridinium dichromate (PDC), Meisenheimer complex. Suzuki coupling, Heck reaction, Negishi reaction, Baylis-Hillman reaction.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this course	Professional Communication and Transferable skills.
Recommended Text	 J. March and M. Smith, Advanced Organic Chemistry, 5th ed., John-Wiley and Sons.2001. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehartand Winston Inc.,1959. P. S. Kalsi, Stereochemistry of carbon compounds, 8thedn, New Age International Publishers,2015. P. Y.Bruice, Organic Chemistry, 7thedn.,Prentice Hall, 2013. R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic Chemistry, 7th edn.,

	Pearson Education,2010.
Reference	1. S. H. Pine, <i>Organic Chemistry</i> , 5 th edn, McGraw Hill International
Books	Editionn, 1987.
	2. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing
	House, Bombay, 2000.
	3. E.S. Gould, Mechanism and Structure in Organic Chemistry, Holt,
	Rinehartand Winston Inc.,1959.
	4. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Longman Press, 1989.
	5. J. A. Joule and K. Mills, <i>Heterocyclic Chemistry</i> , 4 th ed., John-Wiley,2010.
Website and	1. https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	chemistry/organic
source	2. https://www.organic-chemistry.org/

Students will be able:

CO1: To recall the basic principles of aromaticity of organic and heterocyclic compounds.

CO2: To understand the mechanism of various types of organic reactions.

CO3: To predict the suitable reagents for the conversion of selective organic compounds.

CO4: To correlate the principles of substitution, elimination, and addition reactions.

CO5:To design new routes to synthesis organic compounds.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course	PHYSIC	AL CHEMIS	STRY	Y-I					
Paper No.	CC5								
Category	Core	Year	I	Credits	5	Course Code	23MCH2C2		
		Semester	II						
Instructional hours	Lecture	Tutorial	Lab Practice			Total			
per week	5	1	-			6			
Prerequisites	Basic con	cepts of phy	sical	chemistry		1			
Objectives of the	To recall	the fundamer	ntals o	of thermod	ynam	ics and the comp	osition of partial		
course	molar qua					_			
						proach of the fund			
	To compa Einstein	are the signif	ticanc	e of Maxv	vell-E	Boltzman, Fermi-	Dirac and Bose-		
		ate the theorie	es of 1	eaction rat	es foi	the evaluation of	f thermodynamic		
	parameter		25 01 1	caction rat	C 5 101	the evaluation of	thermodynamic		
	To study t	the mechanis	m and	kinetics of	f reac	tions.			
UNIT-I:	Classical	Thermodyn	namio	es: Partial	mola	ar properties-Che	emical potential,		
		_		-	-	systems. Determ	_		
	_						determination of		
	, ,	, ,					dependence of		
	_	_		_		ermodynamics of			
		•		•			ons of ideal and		
				•		y coefficients-st			
						ezing point metho			
UNIT-II:		•				n of statistical	•		
		•				•	- distribution of		
				•	•	articles. Assemb			
		-				, Fermi Dirac &			
		_					ns-evaluation of		
		*			•	tition functions	· ·		
				-			ions in terms of		
	^			•		n constants. Statis	* *		
	*			-		ernal energy, en			
						al entropy, equil			
		_	-	-	-	f mono and di ato	~		
UNIT-III:	_					Einstein and Deby	mass and energy		
UNIT-III;							nt flow, force and		
			_				nsager reciprocal		
							s- Application of		
		le thermodyn					s- Application of		
	in ic version	ic thermodyn	amics	to blologi	zai sy	stems.			
UNIT-IV:	Kinetics	of Reactions	: The	ories of rea	ction	s-effect of tempe	rature on reaction		
	rates, coll	lision theory	of re	action rate	s, Uı	nimolecular react	ions - Lindeman		
	and Chri	stiansen hyp	othes	sis- molec	ular	beams, collision	cross sections,		
	effectiven	ess of collisi	ions,	Potential e	nergy	surfaces. Transi	tion state theory-		
				-			cations of ARRT		
	to reaction	ons between	aton	ns and me	olecu	les, time and to	rue order-kinetic		
	parameter	evaluation. I	actor	s determine	e the	reaction rates in s	olution - primary		
	salt effec	t and secon	dary	salt effect	, Ho	mogeneous catal	ysis- acid- base		

	catalysis-mechanism of acid base catalyzed reactions-Bronsted catalysis law,
UNIT-V:	enzyme catalysis-Michelis-Menton catalysis.
UNII-V:	Kinetics of complex and fast reactions: Kinetics of complex reactions,
	reversible reactions, consecutive reactions, parallel reactions, chain reactions.
	Chain reactions-chain length, kinetics of $H_2 - Cl_2 \& H_2 - Br_2$ reactions (Thermal
	and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast
	reactions-relaxation methods- temperature and pressure jump methods
	electric and magnetic field jump methods -stopped flow flash photolysis
	methods and pulse radiolysis. Kinetics of polymerization-free radical, cationic,
	anionic polymerization - Polycondensation.
Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferable skills.
Recommended	1. J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of
Text	Chemistry,2nd edition,S.L.N.Chand and Co., Jalandhar, 1986.
	2.I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition,
	W.A. BenjaminPublishers, California, 1972.
	3. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995.
	4. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013.
	5. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical
	transformation, M acmillan India Ltd, Reprint - 2011.
Reference Books	1. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A
	Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999.
	2. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas
	Publishing, Pvt. Ltd., New Delhi, 1990.
	3. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry,
	Macmillan Publishers, New York, 1974
	4. K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press, 1996.
Website and	5. Gurdeep Raj, Phase rule, Goel Publishing House, 2011. 1. https://nptel.ac.in/courses/104/103/104103112/
e-learning source	2. https://bit.ly/3tL3GdN
c rear ming source	2. mponiomy out

Students will be able:

CO1: To explain the classical and statistical concepts of thermodynamics.

CO2: To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.

CO3: To discuss the various thermodynamic and kinetic determination.

CO4: To evaluate the thermodynamic methods for real gases ad mixtures.

CO5:To compare the theories of reactions rates and fast reactions.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course	INORGA	NIC CHEM	ISTR	Y PRACT	TICA]	L	
Paper No.	Core VI						
Category	Core	Year	I	Credits	4	Course Code	23MCH2P1
		Semester	II				
Instructional hours	Lecture	Tutorial		Practice		Total	
per week	-	1	5			6	
Prerequisites		<u> </u>				tive analysis	
Objectives of the					bserv	ation as an analy	rtical tool for the
course		e estimation			narin	g standard solutio	ons
							ne amount of ion
		present in the				_	
			, pres	ent in the g	given	solution accurate	ely without using
	instrument To determ		nt of	ions prese	nt in a	binary mixture a	accurately.
UNIT-I:							cationscontaining
				rare catio	ns.Ca	tions to be tested	
	Group-I: V	W, Tl and Pb	•				
	Group-II	: Se, T	e, Mo	, Cu, Bi an	d Cd.		
	Group-III	: Tl, Ce,	Th, Z	r, V, Cr, F			
	Group-IV			and Mn.			
	Group-V	: Ca, B	sa and	Sr.			
	Group-VI	: Li an	d Mg.				
UNIT-II:	Preparati					on of inorganice	
		a. Pre	parati	on of tristh	iourea	acopper(I)sulphat	e
		b. Prepar	ration	of potassiu	ım trio	oxalate chromate	(III)
		c. Prep	aratio	on of tetram	mine	copper(II) sulpha	te
			d. Pı	reparation of	of Rei	neck's salt	
		e. Preparati	on of	hexathiour	eacop	per(I) chloridedil	nydrate
	f.	Preparation	of cis	-Potassium	tri ox	xalate diaquachro	omate(III)
		g. Pre	parati	on of sodiu	ım tri	oxalatoferrate(III)
		h. Pre	eparat	ion of hexa	thiou	realead(II) nitrate	e
UNIT-III:	Complexo	metric Titra					
		1. Estimat	ion of	zinc, nicke	el, ma	gnesium, and cal	cium.
	2. Estimat	ion of mixtur	re of r	netal ions- ₁		ntrol, masking ar	nd demasking
	3.	Determinati	on of	_		l in a mixture (pF	H control).
		4. Determ	inatio	n of manga	nese i	in the presence of	f iron.
		5. Deter	minat	tion of nick	tel in 1	the presence of ir	ron.

Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended Text	 A. JeyaRajendran, Microanalytical Techniques in Chemistry: Inorganic Qualitative Analysis, United global publishers, 2021. V. V. Ramanujam, <i>Inorganic Semimicro Qualitative Analysis</i>; 3rded., The National Publishing Company, Chennai, 1974. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS, London.
Reference Books	 G. Pass, and H. Sutcliffe, <i>Practical Inorganic Chemistry</i>; Chapman Hall, 1965. W. G. Palmer, Experimental <i>Inorganic Chemistry</i>; Cambridge University Press, 1954.

Students will be able:

CO1: To identify the anions and cations present in a mixture of salts.

CO2: To apply the principles of semi micro qualitative analysis to categorize acid radicals and basic radicals.

CO3: To acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.

CO4: To choose the appropriate chemical reagents for the detection of anions and cations.

CO5:To synthesize coordination compounds in good quality.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's 3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

SCHEME OF VALUATION

Internal marks: 25	External marks: 75
internal marks . 25	For examination the following pattern has to be
	followed.
	Either (A) analysis of mixture of cations with
	preparation of metal complexes
	(OR)
	(B) complexometric titrations with preparation of
	metal complexes
Estimation: 9marks	
Analysis: 9 marks	A)) analysis of mixture of cations with
Preparation: 7 marks	preparation of metal complexes
1 reparation . 7 marks	Anaysis (Report with suitable procedure):40 marks
	Anaysis (Report with suitable procedure).40 marks
	For each action with suitable precedure
	For each cation with suitable procedure
	:10+10+10+10 marks
	Preparation :20
	procedure -5: preparation :15
	procedure -3. preparation .13
	Viva: 5
	Record :10
	D) compleye metric tituations with preparation of
	B) complexometric titrations with preparation of
	metal complexes
	Estimation: 40 marks
	procedure-10
	Error Up to 2% -30
	3%-20
	4 %-10
	>4%-8
	Preparation :20 marks
	procedure -5: preparation :15 marks
	Viva: 5
	Record:10

Title of the Course	MEDICINA	AL CHEMIST	RY							
Paper No.	DSE-3A									
Category	DSEC	Year	I	Credits	3	Course Code	23MCH2E1			
		Semester	II	-	·					
Instructional	Lecture	Tutorial	Lab	Practice		Total	Total			
hours per	3	1	-			4				
week										
Prerequisites	Basic know	ledge of medic	cinal ch	emistry						
Objectives of						armaceutical mat	erials.			
the course		wledge on med			_	,				
		nd the need of				ugs. ents and treatmen	t of diabotas			
		and apply the a					t of diabetes.			
UNIT-I:		11 /					ist, partial agonist.			
							n, Drug synergism,			
	Drug resista	nce, physicoch	emical	factors influ	encing	drug action.				
UNIT-II:	Antibiotics	: Introduction,	Targe	ts of antibi	otics	action, classifica	tion of antibiotics,			
	•						tracyclins, clinical			
			•	•		ds in antibiotic th	* ·			
UNIT-III:							and metabolism of			
							ids Sex hormones: Oestrione, Diethyl			
							Oral contraceptives:			
							e, Hydrocortisone,			
							thyroid drugs: L-			
		L-Thyronine, P								
UNIT-IV:	• •	_					diovascular agents,			
							ypertensive agents,			
	Amiloride.	n and mechan	ism of	action of a	iurelic	s, Furosemide, F	lydrochlorothiazide,			
UNIT-V:						_	ion, Mechanism of			
							etamol, Ibuprofen, eridine. Medicinal			
							Drugs used for the			
							f diabetic mellitus.			
		of insulin, sulfo				,				
Extended	Questions re	elated to the abo	ove top	ics, from var	rious c	ompetitive exami	nations UPSC /			
Professional	TRB / NET	UGC-CSIR /	GATE /	TNPSC other	ers to b	e solved				
Component (is	,	ussed during the	e Tutori	al hours)						
a part of internal										
component only,										
Not to be included in the										
external										
examination										
question paper)										
Skills acquired	Knowledge,	Problem solvi	ng, Ana	lytical abilit	y, Prof	fessional Compete	ency, Professional			
from this	Communica	tion and Trans	ferable	skills.		_				
course										

Recommended	1. Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry,
Text	2. Wilson, Charles Owens: Beale, John Marlowe; Block, John H, Lipincott William,
	12thedition, 2011.
	3. Graham L. Patrick, An Introduction to Medicinal Chemistry, 5th edition, Oxford
	University Press, 2013.
	4. JayashreeGhosh, Atextbook of Pharmaceutical Chemistry, S. Chandand Co. Ltd, 1999, 1
	999 edn.
	5. O.LeRoy, Natural and synthetic organic medicinal compounds, Ealemi, 1976.
	6. S.AshutoshKar, MedicinalChemistry, WileyEasternLimited, NewDelhi, 1993, New
	edn.
Reference	1. Foye's Princles of Medicinal Chemistry, Lipincott Williams, Seventh Edition,
Books	2012
	2. Burger's Medicinal Chemistry, Drug Discovery and Development, Donald
	J.Abraham, David P. Rotella, Alfred Burger, Academic press, 2010.
	3. WilsonandGisvold'sTextbookofOrganicMedicinalandPharmaceuticalChemistry,
	John M.BealeJrandJohnM. Block, Wolters Kluwer, 2011,12 th edn.
	4. P.Parimoo, ATextbook of Medical Chemistry, New Delhi: CBS Publishers. 1995.
	5. S.Ramakrishnan, K.G. Prasannanand R. Rajan, Textbook of Medical Bi
	ochemistry,Hyderabad:OrientLongman.3 rd edition,2001.
Website and	1. https://www.ncbi.nlm.nih.gov/books/NBK482447/
e-learning	2. https://training.seer.cancer.gov/treatment/chemotherapy/types.html
source	3. https://www.classcentral.com/course/swayam-medicinal-chemistry-12908

Students will be able:

CO1: Predict a drugs properties based on its structure.

CO2: Describe the factors that affect its absorption, distribution, metabolism, and excretion, and hence the considerations to be made in drug design.

CO3: Explain the relationship between drug's chemical structure and its therapeutic properties.

CO4: Designed to give the knowledge of different theories of drug actions at molecular level.

CO5: To identify different targets for the development of new drugs for the treatment of infectious and GIT.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course	GREEN (CHEMISTR	Y				
Paper No.	DSE-3 B						
Category	DSEC	DSEC	I	Credits	3	Course Code	23MCH2E2
		Semester	II				
Instructional hours	Lecture	cture Tutorial Lab Practice		Total			
per week	3	1	-			4	
Prerequisites	Basic kno	wledge of ge	neral	l chemistry	7		
Objectives of the			ne	principle		of green	
course	To propos	se green sol	ution	s for chen	nical	energy storage	and conversion.
	Propose Petrochem	_	ons	for indus	trial	production of	Petroleum and
			nollu	ition preve	ntion	in Industrial ch	emical and fuel
			•	•		ng industries.	cilical and fuci
							nts, Organic and
	inorganic	chemicals.			•		_
UNIT-I:							reen Chemistry.
							, terminologies,
		•		ry organiza	ations	and Twelve pri	nciples of Green
UNIT-II:		with example		ranganta	ootol:	usts and solvents	in detail, Green
UN11-11:							green reagents:
							criteria, general
							ercritical carbon
							nples of organic
						eid and catechol.	
UNIT-III:							xidation catalysts,
			_	-	-		minum chloride,
UNIT-IV:						d photosensitizer	
U111-1V.		•	_	•		inhydride format	· 1
						s in organic synth	
UNIT-V:	Micro way	e induced gr	een s	ynthesis-In	trodu	ction, Instrument	ation,Principle
						ation, Cavitation	theory
T		ınd assisted g					
Extended						arious competitiv	
Professional Component (is a		cussed during				NPSC others to be	e sorved
part of internal	(10 bc dis	cussed during	guic	i utoriai iio	urs)		
component only,							
Not to be included							
in the external							
examination							
question paper)							
Skills acquired from						ity, Professional	Competency,
this course	Profession	al Communi	cation	and Trans	terabl	le skills.	

Recommended	1. Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green
Text	Chemistry, Anamalaya Publishers, 2005.
	2. W. L. McCabe, J.C. Smith and P. Harriott, Unit Operations of
	ChemicalEngineering, 7 th edition, McGraw-Hill, NewDelhi,2005.
	3. J. M. Swan and D. St. C. Black, Organometallics in Organic
	Synthesis, Chapman Hall, 1974.
	4. V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special
	Techniques, Narosa Publishing House, New Delhi, 2001.
	5. A. K. De, Environmental Chemistry, New Age Publications, 2017.
Reference Books	1. Anastas, P.T. and Warner, J.K. Oxford Green Chemistry -Theory and
	Practical, University Press, 1998
	2. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker, 2001
	3. Cann, M.C. and Connely, M.E. Real-World Cases in Green
	Chemistry, American Chemical Society, Washington, 2000
	4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry,
	AmericanChemical Society Washington, 2002.
	5. Chandrakanta Bandyopadhyay, An Insight into Green Chemistry,
	Books and Allied (P) Ltd, 2019.
Website and	1. https://www.organic-chemistry.org/
e-learning source	2. https://www.studyorgo.com/summary.php

Students will be able:

CO1: To recall the basic chemical techniques used in conventional industrial preparations and in green innovations.

CO2: To understand the various techniques used in chemical industries and in laboratory.

CO3: To compare the advantages of organic reactions assisted by renewable energy sources and non-renewable energy sources.

CO4: To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted organic synthesis.

CO5: To design and synthesize new organic compounds by green methods.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	BIO-INO	RGANIC C	HEM	ISTRY				
Paper No.	DSE-4A							
Category	DSE	Year	I	Credits	3	Course Code	23MCH2E3	
		Semester	II					
Instructional hours	Lecture	Tutorial	Lab	Practice		Total		
per week	3	1	-			4		
Prerequisites		wledge of ch						
Objectives of the course	To unders To study t To have k	tand the role tand the biolo he toxicity of nowledge on s on various r	ogical f meta diagn	significand ls in medic lostic agent	ce of i			
UNIT-I:	To discuss on various metalloenzymes properties. Essential trace elements: Selective transport and storage of metal ions: Ferritin, Transferrin and sidorphores; Sodium and potassium transport, Calcium signalling proteins. Metalloenzymes: Zinc enzymes—carboxypeptidase and carbonic anhydrase. Iron enzymes—catalase, peroxidase. Copper enzymes—superoxide dismutase, Plast ocyanin, Ceruloplasmin, Tyrosinase. Coenzymes—Vitamin-B12 coenzymes.							
UNIT-II:	Transport Proteins: Oxygen carriers -Hemoglobin and myoglobin - Structure and oxygenation Bohr Effect. Binding of CO, NO, CN– to Myoglobin and Hemoglobin. Biological redox system: Cytochromes-Classification, cytochrome a, b and c. Cytochrome P-450. Non-heme oxygen carriers-Hemerythrin and hemocyanin. Iron-sulphur proteins- Rubredoxin and Ferredoxin-Structure and classification.							
UNIT-III:	Nitrogen fixation-Introduction, types of nitrogen fixing microorganisms. Nitrogenase enzyme - Metal clusters in nitrogenase- redox property - Dinitrogen complexes transition metal complexes of dinitrogen - nitrogen fixation via nitride formation and reduction of dinitrogen to ammonia. Photosynthesis: photosystem-I and photosystem-II-chlorophylls structure and function.							
UNIT-IV:	Compound Anticance Technetia	ds: Vanadit r Agents.Che m Imaging A	ım-Ba elatior gents	used Diab n therapy;	etes Cance	Cd, Zn, Pb, As, Drugs; Platinu er treatment. Dia RI Imaging Age	m- Containing gnostic Agents:	
Extended	and critical magnetic Field. Enzymes -Introduction and properties -nomenclature and classification. Enzyme kinetics, free energy of activation and the effects of catalysis. Michelis - Menton equation - Effect of pH, temperature on enzyme reactions. Factors contributing to the efficiency of enzyme. Questions related to the above topics, from various competitive examinations							
Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)							
Skills acquired from this course		ge, Problem so nal Communi				ity, Professional e skills.	Competency,	

Recommended	1. Williams, D.R. – Introdution to Bioinorganic chemistry.									
Text	2. F.M. Fiabre and D.R. Williams—The Principles of									
Text										
	Bioinorganic Chemistry, Royol Soceity of Chemistry,									
	Monograph for Teachers-31									
	3. K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co., USA.									
	4. G.N. Mugherjea and Arabinda Das, Elements of Bioinorganic									
	Chemistry -1993.									
	5. R. Gopalan, V. Ramalingam, Concise									
	Coordination Chemistry, S. Chand, 2001.									
Reference Books	1. M.Satake and Y.Mido, Bioinorganic Chemistry- Discovery									
	PublishingHouse, New Delhi (1996)									
	2. M.N. Hughes, 1982, The Inorganic Chemistry of Biological									
	processes, IIEdition, Wiley London.									
	3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.									
	4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 2002.									
	5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.									
Website and	1. https://www.pdfdrive.com/instant-notes-in-inorganic-chemistry-the-									
e-learning source	instant-notes-chemistry-series-d162097454.html									
	2. https://www.pdfdrive.com/shriver-and-atkins-inorganic-chemistry-5th-									
	edition-d161563417.html									

Students will be able:

CO1: The students will be able to analyses trace elements.

CO2: Students will be able to explain the biological redox systems.

CO3: Students will gain skill in analyzing the toxicity in metals.

CO4: Students will have experience in diagnosis.

CO5: Learn about the nitrogen fixation and photosynthetic mechanism.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	MATERIA	L SCIENCE	C				
Paper No.	DSE-4 B						
Category	DSE	Year	I	Credits	3	Course Code	23MCH2E4
		Semester	II				
Instructional	Lecture	Tutorial	Lab	Practice		Total	1
hours	3	1	-			4	
per week							
Prerequisites		ledge of soli			•		
Objectives of						thods and X-ray	
thecourse						properties of crys	
	_	ze the basis	or se	miconduct	ors, s	superconductivity	materials and
	magnets.	e synthesis cl	laccifi	cation and	annli	cations of nanoma	aterials
						ised for renewabl	
	conversion.	out the mip	or turre	e or mater	iais c	ised for reflewdor	e energy
UNIT-I:		aphy: symn	netry	- unit cell	and	Miller indices -	crystal systems -
		1 0	-				diffraction-Laue
	equations-B	Bragg's law-r	ecipr	ocal lattic	e an	d its application	to geometrical
							stal applications.
						tion-method and a	
UNIT-II:						ibrium stability a	
						re, solutiongrowt	
						briumstability an	
	sol-gel.	Melt	v and	growth	ratur	e, solution growth	in-Stock barger,
	_		ıx tecl	_	zsical	and chemical va	· ·
						secondary extinct	
UNIT-III:							ctrum(qualitative)
	_	•	•			•	opacity. Types of
							LEDs – organic,
	_	1 -				* *	ielectric studies-
							olarisation. Effect
	_						es of dielectric
LINIT IV.						rochemical and de	
UNIT-IV:				•		sner effect, Crit erconductors, BC	•
		•		•	•	Domain theory I	•
						istance. Ferro,	Tysteresis Loop
							c parameters for
							als – propertiesand
							ations, Non-linear
	optics-Secon	nd Harmonic	Gen	erators, m	ixing	of Laser wavel	engths by quartz,
	ruby and Lil						
UNIT-V:						on: Solar Cells: (
		-	-	_		pased. Solar ene	
						photo voltaic ce	
	_					surfaces - Rud ion and splitting o	
		_				r-splitting. Comp	
						gen from alcohol	
			- 8-11		,	6 	

Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be	
includedin the	
external	
examination	
question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferable skills.
Recommend	1. S. Mohan and V. Arjunan, Principles of Materials Science, MJP Publishers,
edText	2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International Union of
	Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge University Press,
	2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to
	Materials Science for Engineers. 6th ed., PEARSON Press, 2007.
Reference Books	1. Suggested Readings 1. M.G. Arora, Solid State Chemistry, Anmol
	Publications, New Delhi, 2001.
	2. R.K. Puri and V.K. Babbar, Solid State Physics, S Chand and Company Ltd,
	2001.
	3. Kittel, Solid State Physics, John-Wiley and sons, NY, 1966.
	4. H.P. Meyers, Introductory Solid State Physics, Viva Books Private Limited,
	1998.
	5. A.R. West, Solid State Chemistry and Applications, John-Wiley and sons,
	1987.
Website and	1.http://xrayweb.chem.ou.edu/notes/symmetry.html.
e-learning source	2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.
	3. https://bit.ly/3QyVg2R

Students will be able:

CO1: To understand and recall the synthesis and characteristics of crystal structures, semiconductors, magnets, nanomaterials and renewable energy materials.

CO2: To integrate and assess the structure of different materials and their properties.

CO3: To analyse and identify new materials for energy applications.

CO4: To explain the importance of crystal structures, piezoelectric and pyroelectric materials, nanomaterials, hard and soft magnets, superconductors, solar cells, electrodes, LED uses, structures and synthesis.

CO5: To design and develop new materials with improved property for energy applications.

CO-PO Mapping (Course Articulation Matrix) PO1 PO₂ PO₃ PO4 PO₅ **PO6 PO7** PO8 **PO9 PO10** CO 1 S S M S S \mathbf{S} M \mathbf{S} S \mathbf{S} CO 2 M S S S M S S S \mathbf{S} S **CO 3** S S M S S S S S S M **CO 4** M \mathbf{S} M S \mathbf{S} \mathbf{S} \mathbf{S} \mathbf{S} \mathbf{S} S **CO 5** M S M S M S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	Preparati	on of consur	ner p	roducts				
Paper No.	SEC1	SEC1						
Category	SCE	Year	II	Credits	2	Course Code	23MCH2S1	
		Semester	III					
Instructional hours	Lecture	Tutorial	Lab	Practice		Total		
per week	4					4		
Prerequisites	Basic kno	wledge of Co	nsum	er products	S			
Objectives of the	To develo	p entreprener	ır ski	lls				
course	To provid	e hand on exp	perier	ice to prepa	re co	nsumer products		
	To develo	p starters						
UNIT I							characteristics of	
TINITED TI						onsumer products		
UNIT II						nd, cottage chees ning powder, pai		
		h powder and					ii baiiii, tootii	
		of oils from				1 0 00101		
UNIT III		shampoo,- c						
			ams ,	, lotion-clea	ansing	g, moisturising, al	l purposeshaving	
	cream, su		II	l 1 1		4: 1: 4: . 1.	1: 11	
Skills acquired from	_					parations, lipstick the preparation of	_	
this course	products	c and names	on na	iiiiig iiivoi	viligi	ne preparation of	Consumer	
Recommended	•	eference boo	k and	Directory	for s	mall industries –	Malik and	
Text						Institute, New De		
ICAC				•		Vasan, New Cen	,	
		vt.Ltd., Chem						
		•		•	Dr.	L. Rangaraja:	n, Sree Ranga	
	Pı	ublications, R		•				
		· ·		o-preneur.n				
						me Publications,	• .	
	5. N	eengalum Si	rutho	zhil nadath	alam,	S. A.Soosai raj	a, New Century	
	В	ook House P	vt. Lto	d., Chennai	, 1983	3.		
	6. H	andbook of S	Soap	Industries,	Malik	and Dhingra, S	mall Industry	
	R	esearch Instit	ute, I	Delhi (1974	-1975	5)		
	7. G	eorge Howar	d, <i>Pr</i>	inciples an	id Pro	actice of Perfum	es and	
	7. George Howard, <i>Principles and Practice of Perfumes and Cosmetics</i> , Stanley Therones, Cheltenham: UK, 1987.							
			•			Cosmetics - A	Consumer	
		e, Macmillan		_				
		•						

Students will be able:

CO1: discuss the significance of consumer products

CO2: describe the steps to be taken before constructing or establishing a factory, licenses registration.

CO3: explain the preparation of Tooth powder, tooth paste, Talcum powder,

CO4. Explain about the preparation of shampoo, handkerchief perfumes, dry perfume sachets, soap powder, , various soaps liquids.

CO5: explain the importance of Value added food products like jam. Jelly etc in food Chemistry

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the Course	ORGANI	ORGANIC SYNTHESIS AND PHOTOCHEMISTRY							
Paper No.	CC7								
Category	Core	Year	II	Credits	5	Course Code	23MCH3C1		
		Semester	III						
Instructional hours	Lecture	Tutorial	Lab	Practice		Total			
per week	5	1	-			6			
Prerequisites		wledge of org	_						
Objectives of the				-	-	carbon skeletons	and the presence		
course		nal groups an		_					
	•	various syntl	hetica	lly importa	int rea	agents for any su	ccessful organic		
	synthesis.						1 00		
					ıdent	ifying suitable sy	nthons to effect		
		organic synt			4:				
		he concepts o	_	-		anic reactions.			
UNIT-I:							· D1 ·		
UNIT-1.	_	•	•				ninary Planning – analysis of the		
				•		•	ational precursors,		
						•	itermediates that		
		-		-		•	sulting yield of		
	alternativ	emethods. I	Linear	· Vs conv	ergen	t synthesis. syn	thesis based on		
	_			_	_		ements. Use of		
		•		~ ~		~ ~	ts. Examples on		
					-	d, advantages of	connvergent		
UNIT-II:		· •				rolled products.	lygige Altomata		
UN11-11;	_	-				· ·	lysis; Alternate l compounds via		
		•		_			ng materials and		
		* *		•		•	vergent synthesis,		
	Ι .					•	ion of hydroxyl,		
			_				of protection and		
	deprotecti	on in synthe	sis. C	Control elei	nents	: Regiospecific o	control elements.		
	Use of	protective g	groups	s, activati	ng g	roups, and bri	dging elements.		
	Stereospe	cific control e	eleme	nts. Functio	onal g	roup alterations a	nd transposition.		
	D . 1.	D 4	117	1 177	cc	1 771 14	1. 111 1 1		
UNIT-III:						*	bius and Huckel yeloaddition and		
	_					~	anionic, and 1,3-		
	_						ization and ring		
				_		nes and triene	-		
							ions, degenerate		
	_					· -	ransfer reactions.		
	_		_	_	_	lectivity in pericy			
	_	-							

UNIT-IV:	Organic Photochemistry-I: Photochemical excitation: Experimental techniques; electronic transitions; Jablonskii diagrams; intersystem crossings; energy transfer processes; Stern Volmer equation. Reactions of electronically excited ketones; $\pi \rightarrow \pi^*$ triplets; Norrish type-I and type-II cleavage reactions; photo reductions; Paterno-Buchi reactions;
UNIT-V:	Organic Photochemistry-I: Photochemistry of α,β -unsaturated ketones; cistrans isomerisation. Photon energy transfer reactions, Photo cycloadditions, Photochemistry of aromatic compounds; photochemical rearrangements; photo-stationery state; di- π -methane rearrangement; Reaction of conjugated cyclohexadienone to 3,4-diphenyl phenols; Barton's reactions.
Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferable skills.
Recommended	1. F. A. Carey and Sundberg, Advanced Organic Chemistry, 5thed, Tata
Text	McGraw-Hill, New York, 2003.
	2. J. March and M. Smith, Advanced Organic Chemistry, 5 th ed., John-Wiley and sons, 2007.
	3. R. E. Ireland, Organic synthesis, Prentice Hall India, Goel publishing
	house, 1990. 4. Clayden, Greeves, Warren, Organic Chemistry, Oxford University Press,
	Second Edition, 2016.
	5. M. B. Smith, Organic Synthesis 3 rd edn, McGraw Hill International Edition,
	2011.
Reference Books	1. Gill and Wills, Pericyclic Reactions, Chapman Hall, London, 1974.
	2. J.A. Joule, G.F. Smith, Heterocyclic Chemistry, Garden City Press,
	GreatBritain, 2004.
	3. W. Caruthers, Some Modern Methods of Organic Synthesis 4 th edn, Cambridge University Press, Cambridge, 2007.
	4. H. O. House. Modern Synthetic reactions, W.A. Benjamin Inc, 1972.
	5. Jagdamba Singh and Jaya Singh, Photochemistry and Pericyclic
	Reactions, New Age International Publishers, New Delhi, 2012.
Website and	1. https://rushim.ru/books/praktikum/Monson.pdf
e-learning source	

Students will be able:

CO1: To recall the basic principles of organic chemistry and to understand the various reactions of organic compounds with reaction mechanisms.

CO2: To understand the versatility of various special reagents and to correlate their reactivity with various reaction conditions.

CO3: To implement the synthetic strategies in the preparation of various organic compounds.

CO4: To predict the suitability of reaction conditions in the preparation of tailor-made organic compounds.

CO5: To design and synthesize novel organic compounds with the methodologies learnt during the

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	COORDI	NATION C	HEM	ISTRY – I			
Paper No.	CC8						
Category	Core	Year	II	Credits	5	Course Code	23MCH3C2
		Semester	III				
Instructional hours	Lecture	Tutorial	Lab	Practice		Total	
per week	5	1	-			6	
Prerequisites	Basic kno	wledge of inc	rgani	c chemistr	y	1	
Objectives of the						of bonding in co	ordination
course	compound	ls.					
	To learn v	arious metho	ds to	determine	the st	ability constants	of complexes.
						igrams and predi	ct the electronic
		that are taki			-		
				tion and ele	ectron	transfer mechani	stic pathways of
		n complexes					
						quare planar com	
UNIT-I:					•	<u> </u>	theory •splitting
						nd square plana	*
		•		_	•		cal series • crystal
		-					es• evidences for
	•				•	•	els • Jahn Teller
			_			•	and energy level l pi bonding in
	_	, square plan			-	_	i pi bonding in
UNIT-II:						Term states	for d ions •
UNII-II;	*			-			election rules for
					-	-	abe energy level
		-	-		-	rameter and calc	
	_	repulsion par			na pa	arameter and ear	diation of inter
UNIT-III:					he co	mplexes: Stabilit	v of complexes:
OTATI III.		_	_			ermodynamic asp	•
		•	•	•		constants, Stabil	•
		-				nination of stabil	-
						rves and Bjerrun	•
	_		-			method, Ion exc	
			_	-		ation method	
	(Job's me	thod) Magne	tic pro	operty of c	ompl	exes: Spin-orbit o	coupling, effect of
	_	coupling or	n ma	gnetic mo	ments	s, quenching of	orbital magnetic
TINITED TX	moments.						
UNIT-IV:						n reactions of	
			-			Labile complexe	
				_		ys for substitution	
		•			_	kes; Classification	
			-			on and their corre	•
		-				ons in square planting of transport	-
		ct, tneories of planar compo				cations of trans et	neet in synthesis
	or square	pianai compc	ounus;	, Kuiliakov	iest.		

UNIT-V:	Electron Transfer reactions in octahedral complexes: Outer sphere electron transfer reactions and Marcus-Hush theory; inner sphere electron transfer reactions; nature of the bridging ligand in inner sphere electron transfer reactions. Photo-redox, photo-substitution and photo-isomerisation reactions in complexes and their applications.
Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferable skills.
Recommended	1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry –
Text	Principles of structure and reactivity, 4th Edition, Pearson Education Inc.,
	2006 2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008
	3. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.
	4. B. N. Figgis, Introduction to Ligand Fields, Wiley Eastern Ltd, 1976.
	5. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced
D.C. D.I	Inorganic Chemistry, 6thed.; Wiley Inter-science: New York, 1988.
Reference Books	1. Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders Publications, USA, 1977.
	2. Peter Atkins and Tina Overton, Shriver and Atkins' Inorganic Chemistry,
	5th Edition, Oxford University Press, 2010.
	3. Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson, P. L. Guas, John
	Wiley, 2002, 3rd edn.
	4. Concepts and Models of Inorganic Chemistry, B. Douglas, D.
	McDaniel, J. Alexander, John Wiley, 1994, 3rd edn. 5. Inorganic Chemistry, D. F. Shriver, P. W. Atkins, W. H. Freeman and
	Co,London, 2010.
Website and	https://ocw.mit.edu/courses/5-04-principles-of-inorganic-chemistry-ii-fall-
e-learning source	2008/pages/syllabus/
	1

Students will be able:

CO1: Understand and comprehend various theories of coordination compounds.

CO2: Understand the spectroscopic and magnetic properties of coordination complexes.

CO3: Explain the stability of complexes and various experimental methods to determine the stability of complexes.

CO4: Predict the electronic transitions in a complex based on correlation diagrams and UV-visible spectral details.

CO5: Comprehend the kinetics and mechanism of substitution reactions in octahedral and square planar complexes.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	PHYSICAL CHEMISTRY PRACTICAL									
Paper No.	CC9									
Category	Core	Year	II	II Credits 4 Course Code 23MCH3						
		Semester	III							
Instructional hours	Lecture	Tutorial	Lab	Practice	•	Total				
per week	-	1	5			6				
Prerequisites	Basic kno	wledge of ph	ysical	chemistry						
Objectives of the	To unde	erstand the	prii	nciple of	cond	ductivity exper	iments through			
course	conduc to	metric titrati	ions.							
	To evalua	te the order	of the	reaction,	tempe	rature coefficien	t, and activation			
	energy of	the reaction b	oy fol	lowing pse	udo fi	rst order kinetics				
		-	_		_	•	rming congruent			
	_			_		es and composition				
				•		alic acid on chard				
					•		, charge density			
UNIT-I:		n and Maxwo vity Experin		peed distri	oution	by computation	al calculation.			
UNIT-II:	verific 2. Verifi weak 3. Verif 4. Deter 5. Acid-	cation of DHO cation of Ost acid. fication of Komination of s	O equ wald' ohlrau solubi	ation. s Dilution l sch's Law lity of a spa	Law & for we aringly I weak	of a strong electron of a strong electron of a Determination of eak electrolytes. y soluble salt. a acid vs NaOH). s only).				
Ultil-ii.	Study the coeff Study the median coeff	icient and als	so the f the 1	activation reaction bet	energ	a ester, determine the temperature gy of the reaction. a acetone and iodine in acidic ine the order with respect to iodine				
UNIT-III:	Adsorptio	on of phase on	liagram for a simple binary system 1. Naphthalene-phenanthrene 2. Benzophenone- diphenyl amine cid on charcoal & determination of surface area nly).							

Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferable skills.
Recommended	1. Viswanathan and P.S.Raghavan, Practical Physical Chemistry, Viva
Text	Books, New Delhi, 2009.
	2. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	Viswanathan Co. Pvt., 1996.
	3. V.D. Athawale and Parul Mathur, Experimental Physical Chemistry, New
	Age International (P) Ltd., New Delhi, 2008.
	4. E.G. Lewers, Computational Chemistry: Introduction to the Theory
	and Applications of Molecular and Quantum Mechanics, 2 nd Ed., 5. Springer, New York, 2011.
Reference Books	1. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publishing House,
Reference Dooks	2001.
	2. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in Physical
	Chemistry, 8th edition, McGraw Hill, 2009.
	3. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S. Chand
	and Co., 1987.
	4. Shailendra K Sinha, Physical Chemistry: A laboratory Manual, Narosa
	Publishing House Pvt, Ltd., New Delhi, 2014.
	5. F. Jensen, Introduction to Computational Chemistry, 3 rd Ed., Wiley-
	Blackwell.
Website and	https://web.iitd.ac.in/~nkurur/2015-16/Isem/cmp511/lab_handout_new.pdf
e-learning source	

Students will be able:

CO1: To recall the principles associated with various physical chemistry experiments.

CO2: To scientifically plan and perform all the experiments.

CO3: To observe and record systematically the readings in all the experiments.

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students' efficiency for societal developments.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Internal marks: 25	External marks: 75
Experiment: 15	Experiment: 40
Result: 10	Result: 20
	Viva: 5
	Record:10

 Estimation of Na and K by flame photometric method. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex 	Title of the Course	ANALYT	ALYTICAL INSTRUMENTATION TECHNIQUES PRACTICAL								
Instructional hours Lecture Tutorial Lab Practice Total	Paper No.	CC 10									
Instructional hours Lecture Tutorial Lab Practice Total	Category	Core	Year	 							
Perequisites MSC I year			Semester	III							
MSC 1 year	Instructional hours	Lecture	Tutorial	Lab Practice Total							
To design chromatographic methods for identification of species. To analyze different constituents through instrumental methods of analysis. To evaluate different contaminants in materials using turbidimetry and conductivity measurements. To design experiments for analysis of inorganic and organic materials. To analyze constituents in materials using emission and absorption techniques. UNIT-1: 1. Determination of the equivalent conductance of a weak acid atdifferen concentrations and verifying Ostwald dilution law. Calculation of the dissociation constant of the acid. 2. Determination of the equivalent conductance of a strong electrolyte at different concentrations and examining the validity of the Onsager's theory as limiting law at high dilutions. 3. Conductometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH. 4. Conductometric titration of NH ₄ Cl Vs NaOH. 5. Conductometric titration of CH ₃ COONa Vs HCl. 6. Potentiometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH 7. Determination of pK _a of weak acid by EMF method. 8. Potentiometric titration of FAS Vs K ₂ Cr ₂ O ₇ 9. Potentiometric titration of KI Vs KMnO ₄ . 10. Potentiometric titration of KI Vs KMnO ₄ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 13. Determination of Se, Cu and Ni by colorimetric method. 24. Estimation of Fe, Cu and Ni by colorimetric method. 25. Estimation of Se, Cu and Ni by colorimetric method. 26. Estimation of Se, Cu and Ni by colorimetric method. 27. Determination of spectrophotometric intended effectively and equilibrium constant for the complex and equilibrium constant for the complex	per week	-	1	5			6				
To analyze different constituents through instrumental methods of analysis. To evaluate different contaminants in materials using turbidimetry and conductivity measurements. To design experiments for analysis of inorganic and organic materials. To analyze constituents in materials using emission and absorption techniques. 1. Determination of the equivalent conductance of a weak acid atdifferent concentrations and verifying Ostwald dilution law. Calculation of the dissociation constant of the acid. 2. Determination of the equivalent conductance of a strong electrolyte at different concentrations and examining the validity of the Onsager's theory as limiting law at high dilutions. 3. Conductometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH. 4. Conductometric titration of NH ₄ Cl Vs NaOH. 5. Conductometric titration of CH ₃ COONa Vs HCl. 6. Potentiometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH. 7. Determination of pK ₈ of weak acid by EMF method. 8. Potentiometric titration of FAS Vs K ₂ Cr ₂ O ₇ 9. Potentiometric titration of KI Vs KMnO ₄ . 10. Potentiometric titration of KI Vs KMnO ₄ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 13. Determination of Na and K by flame photometric method. 14. Estimation of Se, Cu and Ni by colorimetric method. 15. Estimation of Se, Cu and Ni by colorimetric method. 16. Estimation of Sepectrophotometricially the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex	Prerequisites	MSC I yea	ar								
To evaluate different contaminants in materials using turbidimetry and conductivity measurements. To design experiments for analysis of inorganic and organic materials. To analyze constituents in materials using emission and absorption techniques. 1. Determination of the equivalent conductance of a weak acid atdifferen concentrations and verifying Ostwald dilution law. Calculation of the dissociation constant of the acid. 2. Determination of the equivalent conductance of a strong electrolyte at different concentrations and examining the validity of the Onsager's theory as limiting law at high dilutions. 3. Conductometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH. 4. Conductometric titration of NH ₄ Cl Vs NaOH. 5. Conductometric titration of CH ₃ COONa Vs HCl. 6. Potentiometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH 7. Determination of pK _a of weak acid by EMF method. 8. Potentiometric titration of FAS Vs K ₂ Cr ₂ O ₇ 9. Potentiometric titration of Kl Vs KMnO ₄ . 10. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO ₃ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 1. Estimation of Fe, Cu and Ni by colorimetric method. 2. Estimation of Spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex	Objectives of the	To design	chromatogra	phic r	nethods for	r iden	tification of speci	ies.			
conductivity measurements. To design experiments for analysis of inorganic and organic materials. To analyze constituents in materials using emission and absorption techniques. 1. Determination of the equivalent conductance of a weak acid atdifferent concentrations and verifying Ostwald dilution law. Calculation of the dissociation constant of the acid. 2. Determination of the equivalent conductance of a strong electrolyte at different concentrations and examining the validity of the Onsager's theory as limiting law at high dilutions. 3. Conductometric titration of a mixture of HCl and CH3COOH Vs NaOH. 4. Conductometric titration of NH4Cl Vs NaOH. 5. Conductometric titration of CH3COONa Vs HCl. 6. Potentiometric titration of a mixture of HCl and CH3COOH Vs NaOH 7. Determination of pK4 of weak acid by EMF method. 8. Potentiometric titration of FAS Vs K2Cr2O7 9. Potentiometric titration of KI Vs KMnO4 10. Potentiometric titration of KI Vs KMnO4 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 13. Estimation of Fe, Cu and Ni by colorimetric method. 24. Estimation of Spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex	course	To analyz	e different co	nstitu	ents throug	gh ins	trumental method	ds of analysis.			
To design experiments for analysis of inorganic and organic materials. To analyze constituents in materials using emission and absorption techniques. 1. Determination of the equivalent conductance of a weak acid atdifferen concentrations and verifying Ostwald dilution law. Calculation of the dissociation constant of the acid. 2. Determination of the equivalent conductance of a strong electrolyte at different concentrations and examining the validity of the Onsager's theory as limiting law at high dilutions. 3. Conductometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH. 4. Conductometric titration of NH ₄ Cl Vs NaOH. 5. Conductometric titration of CH ₃ COONa Vs HCl. 6. Potentiometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH 7. Determination of pK _a of weak acid by EMF method. 8. Potentiometric titration of FAS Vs K ₂ Cr ₂ O ₇ 9. Potentiometric titration of KI Vs KMnO ₄ . 10. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO ₃ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 13. Estimation of Fe, Cu and Ni by colorimetric method. 14. Estimation of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex					ninants in	matei	rials using turbic	limetry and			
To analyze constituents in materials using emission and absorption techniques. 1. Determination of the equivalent conductance of a weak acid atdifferent concentrations and verifying Ostwald dilution law. Calculation of the dissociation constant of the acid. 2. Determination of the equivalent conductance of a strong electrolyte at different concentrations and examining the validity of the Onsager's theory as limiting law at high dilutions. 3. Conductometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH. 4. Conductometric titration of NH ₄ Cl Vs NaOH. 5. Conductometric titration of CH ₃ COONa Vs HCl. 6. Potentiometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH 7. Determination of pK _a of weak acid by EMF method. 8. Potentiometric titration of FAS Vs K ₂ Cr ₂ O ₇ 9. Potentiometric titration of KI Vs KMnO ₄ . 10. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO ₃ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 1. Estimation of Fe, Cu and Ni by colorimetric method. 2. Estimation of Spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex			•								
 UNIT-I: Determination of the equivalent conductance of a weak acid atdifferent concentrations and verifying Ostwald dilution law. Calculation of the dissociation constant of the acid. Determination of the equivalent conductance of a strong electrolyte at different concentrations and examining the validity of the Onsager's theory as limiting law at high dilutions. Conductometric titration of a mixture of HCl and CH₃COOH Vs NaOH. Conductometric titration of NH₄Cl Vs NaOH. Conductometric titration of CH₃COONa Vs HCl. Potentiometric titration of a mixture of HCl and CH₃COOH Vs NaOH Determination of pK_a of weak acid by EMF method. Potentiometric titration of FAS Vs K₂Cr₂O₇ Potentiometric titration of KI Vs KMnO₄. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO₃. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. Estimation of Fe, Cu and N i by colorimetric method. Estimation of spectrophotometrically the mole ratio of the ferrithicocyanate complex and equilibrium constant for the complex 		_	-		•	-	-				
concentrations and verifying Ostwald dilution law. Calculation of the dissociation constant of the acid. 2. Determination of the equivalent conductance of a strong electrolyte at different concentrations and examining the validity of the Onsager's theory as limiting law at high dilutions. 3. Conductometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH. 4. Conductometric titration of NH ₄ Cl Vs NaOH. 5. Conductometric titration of CH ₃ COONa Vs HCl. 6. Potentiometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH 7. Determination of pK ₄ of weak acid by EMF method. 8. Potentiometric titration of FAS Vs K ₂ Cr ₂ O ₇ 9. Potentiometric titration of KI Vs KMnO ₄ . 10. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO ₃ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 1. Estimation of Fe, Cu and Ni by colorimetric method. 2. Estimation of Na and K by flame photometric method. 3. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex											
dissociation constant of the acid. 2. Determination of the equivalent conductance of a strong electrolyte at different concentrations and examining the validity of the Onsager's theory as limiting law at high dilutions. 3. Conductometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH. 4. Conductometric titration of NH ₄ Cl Vs NaOH. 5. Conductometric titration of CH ₃ COONa Vs HCl. 6. Potentiometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH 7. Determination of pK ₄ of weak acid by EMF method. 8. Potentiometric titration of FAS Vs K ₂ Cr ₂ O ₇ 9. Potentiometric titration of KI Vs KMnO ₄ . 10. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO ₃ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 1. Estimation of Fe, Cu and Ni by colorimetric method. 2. Estimation of Na and K by flame photometric method. 3. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex	UNIT-I:				•						
 Determination of the equivalent conductance of a strong electrolyte at different concentrations and examining the validity of the Onsager's theory as limiting law at high dilutions. Conductometric titration of a mixture of HCl and CH₃COOH Vs NaOH. Conductometric titration of NH₄Cl Vs NaOH. Conductometric titration of CH₃COONa Vs HCl. Potentiometric titration of a mixture of HCl and CH₃COOH Vs NaOH Determination of pK_a of weak acid by EMF method. Potentiometric titration of FAS Vs K₂Cr₂O₇ Potentiometric titration of KI Vs KMnO₄. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO₃. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. Estimation of Fe, Cu and Ni by colorimetric method. Estimation of Na and K by flame photometric method. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex 							id dilution law.	Calculation of the			
different concentrations and examining the validity of the Onsager's theory as limiting law at high dilutions. 3. Conductometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH. 4. Conductometric titration of NH ₄ Cl Vs NaOH. 5. Conductometric titration of CH ₃ COONa Vs HCl. 6. Potentiometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH 7. Determination of pK _a of weak acid by EMF method. 8. Potentiometric titration of FAS Vs K ₂ Cr ₂ O ₇ 9. Potentiometric titration of KI Vs KMnO ₄ . 10. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO ₃ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 13. Estimation of Fe, Cu and Ni by colorimetric method. 14. Estimation of Na and K by flame photometric method. 15. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex											
theory as limiting law at high dilutions. 3. Conductometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH. 4. Conductometric titration of NH ₄ Cl Vs NaOH. 5. Conductometric titration of CH ₃ COONa Vs HCl. 6. Potentiometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH 7. Determination of pK _a of weak acid by EMF method. 8. Potentiometric titration of FAS Vs K ₂ Cr ₂ O ₇ 9. Potentiometric titration of KI Vs KMnO ₄ . 10. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO ₃ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 13. Estimation of Fe, Cu and Ni by colorimetric method. 14. Estimation of Na and K by flame photometric method. 15. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex											
 Conductometric titration of a mixture of HCl and CH₃COOH Vs NaOH. Conductometric titration of NH₄Cl Vs NaOH. Conductometric titration of CH₃COONa Vs HCl. Potentiometric titration of a mixture of HCl and CH₃COOH Vs NaOH Determination of pK_a of weak acid by EMF method. Potentiometric titration of FAS Vs K₂Cr₂O₇ Potentiometric titration of KI Vs KMnO₄. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO₃. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. Estimation of Fe, Cu and Ni by colorimetric method. Estimation of Na and K by flame photometric method. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex 							-	of the Onsager's			
NaOH. 4. Conductometric titration of NH ₄ Cl Vs NaOH. 5. Conductometric titration of CH ₃ COONa Vs HCl. 6. Potentiometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH 7. Determination of pK _a of weak acid by EMF method. 8. Potentiometric titration of FAS Vs K ₂ Cr ₂ O ₇ 9. Potentiometric titration of KI Vs KMnO ₄ . 10. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO ₃ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 13. Estimation of Fe, Cu and Ni by colorimetric method. 14. Estimation of Na and K by flame photometric method. 15. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex		th	eory as limiti	ng lav	w at high d	1141101	ns.				
 Conductometric titration of NH₄Cl Vs NaOH. Conductometric titration of CH₃COONa Vs HCl. Potentiometric titration of a mixture of HCl and CH₃COOH Vs NaOH Determination of pK_a of weak acid by EMF method. Potentiometric titration of FAS Vs K₂Cr₂O₇ Potentiometric titration of KI Vs KMnO₄. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO₃. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. Estimation of Fe, Cu and Ni by colorimetric method. Estimation of Na and K by flame photometric method. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex 		3. C	onductometri	c titra	tion of a m	ixture	e of HCl and CH ₃	3COOH Vs			
5. Conductometric titration of CH ₃ COONa Vs HCl. 6. Potentiometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH 7. Determination of pK _a of weak acid by EMF method. 8. Potentiometric titration of FAS Vs K ₂ Cr ₂ O ₇ 9. Potentiometric titration of KI Vs KMnO ₄ . 10. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO ₃ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 13. Estimation of Fe, Cu and Ni by colorimetric method. 14. Estimation of Na and K by flame photometric method. 15. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex		N	аОН.								
6. Potentiometric titration of a mixture of HCl and CH ₃ COOH Vs NaOH 7. Determination of pK _a of weak acid by EMF method. 8. Potentiometric titration of FAS Vs K ₂ Cr ₂ O ₇ 9. Potentiometric titration of KI Vs KMnO ₄ . 10. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO ₃ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 13. Estimation of Fe, Cu and Ni by colorimetric method. 14. Estimation of Na and K by flame photometric method. 15. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex		4. C	onductometri	c titra	tion of NH	4Cl V	s NaOH.				
 Determination of pKa of weak acid by EMF method. Potentiometric titration of FAS Vs K2Cr2O7 Potentiometric titration of KI Vs KMnO4. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO3. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. Estimation of Fe, Cu and Ni by colorimetric method. Estimation of Na and K by flame photometric method. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex 		5. C	onductometri	ctometric titration of CH ₃ COONa Vs HCl.							
8. Potentiometric titration of FAS Vs K ₂ Cr ₂ O ₇ 9. Potentiometric titration of KI Vs KMnO ₄ . 10. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO ₃ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 13. Estimation of Fe, Cu and Ni by colorimetric method. 14. Estimation of Fe, Cu and Ni by colorimetric method. 15. Estimation of Na and K by flame photometric method. 16. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex		6. Po	otentiometric	titrati	on of a mix	xture (of HCl and CH ₃ C	COOH Vs NaOH			
9. Potentiometric titration of KI Vs KMnO ₄ . 10. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO ₃ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 13. Estimation of Fe, Cu and Ni by colorimetric method. 14. Estimation of Na and K by flame photometric method. 15. Estimation of Spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex		7. D	etermination	of pK	a of weak a	icid b	y EMF method.				
10. Potentiometric titration of a mixture of Chloride and Iodide Vs AgNO ₃ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 1. Estimation of Fe, Cu and Ni by colorimetric method. 2. Estimation of Na and K by flame photometric method. 3. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex		8. Po	otentiometric	titrati	on of FAS	Vs K	$_{2}\mathrm{Cr}_{2}\mathrm{O}_{7}$				
AgNO ₃ . 11. Determination of the pH of buffer solution by EMF method using Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. 13. Estimation of Fe, Cu and Ni by colorimetric method. 14. Estimation of Na and K by flame photometric method. 15. Estimation of Na and K by flame photometric method. 16. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex		9. Po	otentiometric	titrati	on of KI V	s KM	nO ₄ .				
Quinhydrone and Calomel electrode. 12. Study of the inversion of cane sugar in the presence of acid by Polarimetric method. UNIT-II: 1. Estimation of Fe, Cu and Ni by colorimetric method. 2. Estimation of Na and K by flame photometric method. 3. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex				ic titration of a mixture of Chloride and Iodide Vs							
Polarimetric method. 1. Estimation of Fe, Cu and Ni by colorimetric method. 2. Estimation of Na and K by flame photometric method. 3. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex				•							
 Estimation of Na and K by flame photometric method. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex 			-								
3. Determination of spectrophotometrically the mole ratio of the ferrithiocyanate complex and equilibrium constant for the complex	UNIT-II:										
ferrithiocyanate complex and equilibrium constant for the complex		•									
formation.				e complex and equinorium constant for the complex							
4. Determination of the amount (mol/L) of ferricyanide present in the		4. De	termination o	of the amount (mol/L) of ferricyanide present in the							
given solution using cyclic voltammetry.											
5. Determination of the diffusion coefficient of ferricyanide using cyclic voltammetry.				f the	diffusion co	oeffic	ent of ferricyani	de using cyclic			
6. Determination of the standard redox potential of ferri-ferrocyanide				f the	standard re	dox n	otential of ferri-f	errocyanide			
redox couple using cyclic voltammetry.								J			

	Books, New Delhi, 2009. 5. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S. Viswanathan Co. Pvt., 1996.
	Textbook of Quantitative Chemical Analysis; 6th ed., ELBS, 1989. 3.J. D. Woollins, Inorganic Experiments; VCH: Weinheim, 1995. 4. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry, Viva
Recommended Text	 Vogel's Text book of Practical Organic Chemistry, 5th Ed, ELBS/Longman, England, 2003. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, Vogel's
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
question paper)	Whendadas Busham sahina Anabita Lilita B. C. 1. LC
examination	
in the external	
Not to be included	
component only,	
part of internal	
Component (is a	(To be discussed during the Tutorial hours)
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Extended	Questions related to the above topics, from various competitive examinations
	Mass etc.,
	ESR
	NMR
	Raman
	UV-Visible IR
	compounds arrived at from the following instruments
UNIT-III:	Interpretation and identification of the given spectra of variousorganic
	18. Estimation of Fe(II) by 1,10 phenonthroline using spectrophotometry
	colorimetry.
	17. Estimation of chlorophyll in leaves and phosphate in waste water by
	ions by Paper chromatography
	16. Separation of (a) mixture of Azo dyes by TLC (b) mixture of metal
	Voltammetry and comparing with specifications
	fluorimetry 15. Determination of ascorbic acid in real samples using Differential Pulse
	14. Determination of Stern-Volmer constant of Iodine quenching by
	13. Estimation of chromium in steel sample by spectrophotometry
	spectrophotometry
	11. Analysis of water quanty through COD, DO, BOD measurements. 12. Assay of Riboflavin and Iron in tablet formulations by
	10. Determination of caffeine in soft drinks by HPLC11. Analysis of water quality through COD, DO, BOD measurements.
	9. Heavy metal analysis in textiles and textile dyes by AAS
	using spectrophotometric method.
	8. Estimation of the amount of nitrate present in the given solution
	using Nephelometric turbidimeter.

D.f D l	N. C. C						
Reference Books	N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry –						
	Labmanual, S. Viswanathan Co. Pvt. Ltd, 2009.						
	J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S. Chand						
	and Co., 2011.						
	J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publishing						
	House, 2001.						
	G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in Physical						
	Chemistry, 8th edition, McGraw Hill, 2009.						
	J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S. Chand						
	and Co., 1987.						
Website and	4 https://by.l/2055571						
e-learning source	1. https://bit.ly/3QESF7t						
c icai iiiig soui ce	2. https://bit.ly/3QANOnX						

Students will be able:

CO1: To recall the principles associated with various inorganic organic and physical chemistry experiments

CO2: To scientifically plan and perform all the experiments

CO3: To observe and record systematically the readings in all the experiments

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students efficiency for societal developments.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Internal marks : 25	External marks: 75
	For examination the following pattern has to be
	followed.
	Either (A) one question each from units 1 and 3
	(OR)
	(B) one question each from units 2 and 3

Unit 1:9 marks Unit I1:8 marks Unit III:8 marks	A) one question each from units 1 and 3
	Unit 1:40 marks
	Experiment: 25 marks
	Result: 15 marks
	Unit 3:20 marks
	Interpretation: 15 marks
	Identification: 5 marks
	Viva: 5
	Record:10
	B) one question each from units 2 and 3 Unit 2:40 marks Experiment: 25 marks
	Result: 15 marks
	Unit 3:20 marks
	Interpretation: 15 marks
	Identification: 5 marks
	Viva: 5
	Record:10

Title of the Course	PHARMA	ACOGNOSY	ANI	O PHYTO	CHE	MISTRY			
Paper No.	DSE-V A								
Category	DSEC	Year	II	Credits	4	Course Code	23MCH3E1		
		Semester	III						
Instructional hours	Lecture	Tutorial	Lab	Practice	ı	Total			
per week	2	1	-			3			
Prerequisites	Basic know	wledge of ch	emistı	y					
Objectives of the	To develo	op the know	vledge	of natura	al pro	oducts, biologica	al functions and		
course	pharmaco	logical uses.							
	To develop	p knowledge	on pri	imary and s	econo	lary metabolites a	and their sources.		
			cepts	of isolatio	n met	thods and separa	tion of bioactive		
	compound								
	_		_	_	•	ides and marine of	•		
						fferent sampling	-		
UNIT-I:		•				_	s: Introduction,		
		_					rugs: Biological,		
						• •	gnostic of a crude		
	_	•		_	-	-	way. Systematic		
	1	•	_			C	WHO guidelines,		
		-	-		-		ination of foreign		
		oisture Asn	varue	. Pnytocne	micai	investigations-C	General chemical		
UNIT-II:	tests.	n Taahniana	va. Ca	manal maatk	ada a	f autostian tru	as messantian		
UN11-11:		_					es – maceration,		
	Decoction	, percolation,	colation, Immersion and soxhlet extraction.						
	Advanced	techniques-	count	ter current,	stear	n distillation, suj	percritical gases,		
	sonication	, Micro wav	es as	sisted extra	action	. Factors affecting	ng the choice of		
	extraction	process.							
UNIT-III:	Drugs con	ntaining Te	rpeno	ids and vo	olatile	oils: Terpenoid	s: Classification,		
	Isoprene	rule, Isolati	ion a	ind separa	ition	techniques, Ge	eneral properties		
		· ·	• .	•			Oils: Method of		
						•	raniumoil, Citral-		
				_	s: am	yrines; taraxaster	rol: Structure and		
	•	ogical applic							
UNIT-IV:	0	O					aloids in plants,		
	1 ~					* *	e tests andgeneral		
						-	ohine, Reserpine,		
			• •		cture	and uses. papav	erine - structure,		
TINITED X	_	properties and			<u> </u>	· 1 D ·			
UNIT-V:	Plant Glycosides and Marine drugs: Glycosides: Basic ring								
	system,	classificatio	-	isolation,		perties, qualita	•		
		acological activity of Senna glycosides, Cardiac glycosides-Digoxin, Kin, Steroidal saponins glycosides- Diosgenin, hecogenin. Plant pigments:							
	_	_				determination, is			
	synthesis of	of quercetin a	and cy	anidin chlo	oride.	Marine drugs - S	elected Drug		
						Cytotoxic comp			
			ds, an	itibiotic coi	mpou	nds, Anti- inflam	matory agents.		
	Marine to	kins.							

Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferable skills.
Recommended	1. Gurdeep R Chatwal (2016), Organic chemistry of Natural products,
Text	Volume I&II, 5th edition, Himalaya publishing House.
	2. S.V.Bhat, B.A. Nagasampagi, M.Sivakumar (2014), Chemistry of Natural
	Products, Revised edition, Narosa Publishers.
Reference Books	1. Jeffrey B. Harborne (2012), Phytochemical methods: A Guide to Modern
	Techniques of Plant Analysis, 4th edition, Indian reprint, Springer.
	2. Ashutoshkar (2007), Pharmacognosy and Pharmacobiotechnology, 2 nd
	edition, New age international (P) limited, New Delhi.

Students will be able:

CO1: To recall the sources of natural medicines and analysis of crude drugs.

CO2: To understand the methods of evaluation based on various parameters.

CO3: To analyze the isolated drugs

CO4: To apply various techniques to discover new alternative medicines.

CO5: To evaluate the isolated drugs for various pharmacological activities

CO-PO Mapping (Course Articulation Matrix)

				8	(· ,		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

23MCH3E2
omolecules and
ic acids, steroids
tural products.
terpenoids from
assification and
d ring structures
nnose (structure
s of glucose and a) –occurrence,
and sucrose.
properties.
of lipids
, nomenclature,
ry, classification, ons of sterols,
sis of cholesterol
of sexhormones-
ne and cortisol
nd thyroxin.
oteins – dialysis,
- transamination,
proteins: Role of
methods for the
neterocyclic base
leotides. Primary
odel, solid phase
cycle)- protein
, alpha oxidation
version of fat to

UNIT-V:	Fused Ring Heterocyclic Compounds: Benzofused five membered rings: Indole, isoindole, benzofuran and benzothiophene, Preparation and properties. Benzofused six membered rings: Quinoline and isoquinoline: Preparation by ring closure reactions, Reactions: Mechanism of electrophilic and nucleophilic substitutions, oxidation and reduction reactions.
Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this course	Professional Communication and Transferable skills.
Recommended	1. T. K Lindhorst, Essentials of Carbohydrate Chemistry and Biochemistry,
Text	 WileyVCH, North America,2007. L. Finar, Organic Chemistry Vol-2, 5 edition, Pearson Education Asia, 1975. V. K. Ahluwalia and M. Goyal, Textbook of Heterocyclic compounds, Narosa Publishing, New Delhi,2000. M. K. Jain and S. C. Sharma, Modern Organic Chemistry, Vishal Publishing Co., Jalandhar, Delhi, 2014. V. K. Ahluwalia, Steroids and Hormones, Ane books pub., New Delhi,2009. N.K. Jain and S.C. Sharma, modern Organic Chemistry, 4th edition, Vishalpublishing Co.
Reference Books	 I. L. Finar, Organic Chemistry Vol-1, 6thedition, Pearson Education Asia,2004.Pelletier, Chemistry of Alkaloids, Van Nostrand Reinhold Co,2000. Shoppe, Chemistry of the steroids, Butterworthes,1994. Khan, and A. Khanum. Role of Biotechnology in medicinal & aromatic plants, Vol 1 and Vol 10, Ukkaz Publications, Hyderabad,2004. M. P. Singh. and H. Panda, Medicinal Herbs with their formulations, DayaPublishing House, Delhi,2005.
Website and	ps://www.organic-chemistry.org/
e-learning source	ps://www.studyorgo.com/summary.php
C	bs://www.clutchprep.com/organic-chemistry

Students will be able:

CO1: To understand the basic concepts of biomolecules and natural products.

CO2: To integrate and assess the different methods of preparation of structurally different biomolecules and natural products.

CO3: To illustrate the applications of biomolecules and their functions in the metabolism of living organisms.

CO4: To analyse and rationalise the structure and synthesis of heterocyclic compounds.

CO5: To develop the structure of biologically important heterocyclic compounds by different methods.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	Industria	l Chemistry								
Paper No.	SEC 2									
Category	SCE	Year	II	Credits	2	Course Code	23MCH3S1			
		Semester	III							
Instructional hours	Lecture	Tutorial	Lab	Practice		Total				
per week	3		-			3				
Prerequisites	Basic kno	wledge of Co	nsum	er produsts	3	1				
Objectives of the	To develo	pe entrepren	eur sk	ills						
course	To provid	le hand on ex	perien	ice to prepa	are co	nsumer products				
	To develo	pe starters								
UNIT I	Scope of small-scale industries- definition of small-scale industry, cottage industry, village industry- industries that can be stated or developed – location of industries – steps to be taken before constructing or establishing a factory – licenses – registration.									
UNIT II	Hands on	Experience	(Stu	dents can	choos	se any four)				
	powder, to technique Testing of	urmeric powers. f water samp	der, bi les us	utter, ghee, ing testing	milk kit.	toffee, tea, pepper to, honey etc., by so that the tic dyesPrinti	imple			
UNIT III	Extracti	on of Natura	_		•	.: 1 6 1				
		1.				cid from lemon in from milk				
						se from milk				
						ine from tea				
	oxidation	nation of Soil n method				Walkley-Black c				
Skills acquired from	Knowledg	ge and hands	on tra	ining invol	ving	the preparation of	fconsumer			
this course	products									
Recommended Text	Ag 2. Sir Pvt 3. En Pul 4. Sm	 Reference book and Directory for small industries – Malik and Aggarwal, Small Industry Research Institute, New Delhi (1975-1976) Siruthozhilhal sila oru arimugam, Vasan, New Century Book House Pvt.Ltd., Chennai, 1985. Entreprenueral Development, Dr. L. Rangarajan, Sree Rang Publications, Rajapalayam. www.techno-preneur.net 								
	Bo 6. Ha Res 7. Ge <i>Co</i> . 8. Than	Neengalum Siruthozhil nadathalam, S. A.Soosai raja, New Century Book House Pvt. Ltd., Chennai, 1983. Handbook of Soap Industries, Malik and Dhingra, Small Industry Research Institute, Delhi (1974-1975)								

Students will be able:

CO1: discuss the Scope of small-scale industries, industries that can be stated or developed location of industries

CO2: describe the steps to be taken before constructing or establishing a factory, licenses registration.

CO3: explain the methodologies to detect food adulteration and various dyes and dyeing process

CO4. Explain about the significance of soil analysis and methodology for detection of calium etc in soil

CO5: describe the extraction process of natural products

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the Course	COORDI	NATION C	HEM	ISTRY – I	I				
Paper No.	CC11								
Category	Core	Year	II	Credits	5	Course Code	23MCH4C1		
		Semester	IV						
Instructional hours	Lecture	Tutorial	Lab	Practice		Total			
per week	5	1	-			6			
Prerequisites	Basic kno	wledge of inc	organi	c chemistry	У				
Objectives of the	To recogn	ize the funda	menta	al concepts	and st	ructural aspects of	of organometallic		
course	compound								
			-		_		alytic behaviour.		
			ct the	e structure	e of	coordination co	ompounds using		
	spectrosco	•							
						oordination comp			
TINITE						ected complexes.			
UNIT-I:		•		_			of organometallic		
	_						onding in metal – and metal-allyl		
		-	_			•	nd MO approach		
	_	•	_	-	_	-	onyl complexes:		
	١ ،						es, MO approach		
	_				_	_	synergistic effect		
		_	_				yl clusters: Low		
	,						ctures based on		
	polyhedra	l skeleton ele	ctron	pair theory	or W	ade's rule.			
	D 4:	1 (1		C		111.	D 4: C		
UNIT-II:			-	_		_	s: Reactions of		
	_	_					mination (α and β eaction. Organo-		
	metallic	, -	-			olefins (Wilkin	-		
		•	•	•		`	ts (oxo process),		
	•	•		_		•	water gas shift		
	reaction,	•		- '		enes using Re	-		
	Monsonto	•							
UNIT-III:	Inorganic	spectrosco	py -I:	IR spectro	oscop	y: Effect of coor	rdination on the		
	stretching	frequency-si	ulphat	to, carbona	ito, si	ılphito, aqua, nit	tro, thiocyanato,		
	cyano, thiourea, DMSO complexes; IR spectroscopy of carbonyl compound NMR spectroscopy- Introduction, applications of 1H, 15N, 19F, 31P-NM								
	^					inorganic comp	olexes, fluxional		
						R spectroscopy.			
UNIT-IV:	_					minologies: g an	_		
		_			_	g and A; Applica			
		-				e than one unpa			
	electrons -	- hyperfine ar	nd sec	ondary hyp	ertine	e splitting and Kra	amer's doublets;		

	ESR spectra of V(II), Mn(II), Fe(II), Co(II), Ni(II), Cu(II) complexes,
	bis(salicylaldimine)copper(II) and [(NH ₃) ₅ Co-O ₂ -Co(NH ₃) ₅] ⁵⁺ Mossbauer
	spectroscopy – Mossbauer effect, Recoil energy, Mossbauer active nuclei,
	Doppler shift, Isomer shift, quadrupole splitting and magnetic interactions.
	Applications of Mössbauer spectra to Fe and Sn compounds.
LINIUT XI.	
UNIT-V:	Photo Electron Spectroscopy: Theory, Types, origin of fine structures -
	shapes of vibrational fine structures – adiabatic and vertical transitions, PES
	of homonuclear diatomic molecules (N ₂ , O ₂) and heteronuclear diatomic
	molecules (CO, HCl) and polyatomic molecules (H ₂ O, CO ₂ , CH ₄ , NH ₃) –
	evaluation of vibrational constants of the above molecules. Koopman's
	theorem- applications and limitations. Optical Rotatory Dispersion
	– Principle of CD and ORD; Δ and λ isomers in complexes, Assignment of
	absolute configuration using CD and ORD techniques.
Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferable skills.
	Professional Communication and Transferable skills.
Recommended	1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry –
Text	Principles of structure and reactivity, 4th Edition, Pearson Education Inc.,
	2006
	2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson
	Education Inc., 2008
	3. D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.
	4. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts,
	Syntheses and Applications, University Press, 2013.
	5. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6thed.; Wiley Inter-science: New York, 1988.
	morganic Chemisuly, onicu., whey inter-science. New 10tk, 1988.
Reference Books	1. Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals.
	3rd ed. New York, NY: John Wiley, 2000.
	2. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition
	Metal Chemistry: Fundamentals and Applications, 1st edition, Springer-
	Verlag Berlin Heidelberg, 2011.
	3. Concepts and Models of Inorganic Chemistry, B. Douglas, D.
	McDaniel, J. Alexander, John Wiley, 1994, 3rd edn.
	4. K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia,
	1976. De S. Drago, Physical Mathada in Chamistry, Sayadara, Philadalphia, 1977.
Website and	5. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1977. https://archive.nptel.ac.in/courses/104/101/104101100/
website and	Https://archive.hptei.ac.hi/courses/104/101/104101100/
. 1	<u> </u>
e-learning source	

Students will be able:

CO1: Understand and apply 18 and 16 electron rule for organometallic compounds

CO2: Understand the structure and bonding in olefin, allyl, cyclopentadienyl and carbonyl containing organometallic compounds

CO3: Understand the reactions of organometallic compounds and apply them in CO4: understanding the catalytic cycles

CO5: Identify / predict the structure of coordination complexes using spectroscopic tools such as IR, NMR, ESR, Mossbauer and optical rotatory dispersion studies to interpret the structure of molecules by various spectral techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	PHYSICA	AL CHEMIS	STRY	-II					
Paper No.	CC12								
Category	Core	Year	II	Credits	5	Course Code	23MCH4C2		
		Semester	IV						
Instructional hours	Lecture	Tutorial	Lab	Lab Practice		Total			
per week	5	1	-			6			
Prerequisites	Basic kno	wledge of ph	ysical	chemistry					
Objectives of the	To unders	stand the esse	ential	characteris	tics o	f wave functions	and need for the		
course		mechanics.							
		_		_	necha	nical models of p	particle in a box,		
	•	and harmon							
		-		•	_	n and polyelectron	•		
		•	-			d predict the poin			
		t the vibration	onal r	nodes, hyb	rıdız	ation using he co	oncepts of group		
TINITE I	theory.	· 1 1 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1	TT	<u>, . ,</u>		D (1	1 0 1 1		
UNIT-I:	_	-			_	e, Particle wave	-		
	_					wave function. Pr nal, Eigenvalues,	_		
		· ·				tion to quantum			
			_			gen spectrum.	Need for		
	quantum	mechanics		ostulates	-	Quantum Mechar			
	1 *	ation, Time in	-			-	nes, semounger		
UNIT-II:						_	onal and three-		
	Quantum models: Particle in a box-1D, two dimensional and three-dimensional, degeneracy, application to linear conjugated molecular system,								
		_	-	-		lator-wave equat	-		
	_					cance. Rigid Roto			
		•			-	ants and bond le	-		
	molecules								
UNIT-III:	Applicati	ons to Hydi	rogen	and Poly	elec	tron atoms: Hyd	drogen atom and		
	hydrogen	hydrogen like ions, Hamiltonian-wave equation and solutions, radial and							
	angular	functions,	repre	sentation	of	radial distribu	ition functions.		
							nction, variation		
	integral and application to particle in 1D box. Perturbation method - first order								
	* *						erg-Kohn theorem		
		n-Sham equ and Slater de			aton	i-electron spin,	paulis exclusion		
UNIT-IV:					os. s	ymmetry elemen	nts. operations.		
		•	•			point groups- C_n ,			
					_	lasses of symme			
			_			ict representatio			
					-	sentation and red			
	constructi	on of charact	er tab	le for C _{2v} , o	$\mathbb{C}_{2\mathrm{h}}^{-}$, C	C_{3v} and D_{2h} point g	groups.		
UNIT-V:						y: Hydrogen Mol	_		
		_				reatment, Energy			
	Hydrogen	molecule ion	n; Use	e of linear v	ariat	ion function and	LCAO methods.		
	Electronic	conjugated	d sys	stem:Hucke	el m	ethod to Ethyl	ene butadiene,		
	cycloprop	enyl, cyclo b	utadie	ene and Be	nzene	e. Applications of	group theory to		
	molecular	vibrations, e	lectro	nic spectra	of et	hylene.			

Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	(To be discussed during the Tutorial hours)
part of internal	
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferable skills.
Recommended	1. R.K. Prasad, Quantum Chemistry, New Age International Publishers,
Text	New Delhi, 2010, 4th revised edition.
	2. F. A. Cotton, Chemical Applications of Group Theory, John Wiley &
	Sons, 2003, 2 nd edition.
	3. Vincent, Molecular Symmetry and Group Theory. A Programmed
	Introduction to Chemical Applications, John and Willy & Sons Ltd., 2013, 2 nd Edition.
	4. T. Engel & Philip Reid, Quantum Chemistry and Spectroscopy,
	Pearson, New Delhi, 2018, 4 th edition.
	5. G. K. Vemulapalli, Physical Chemistry, Prentice Hall of India Pvt. Ltd.
	2001.
	6. D.A. McQuarrie, Quantum Chemistry, Viva Books PW. Ltd,2013, 2 nd
D.C. D.I	edition.
Reference Books	 N. Levine, Quantum Chemistry, Allyn& Bacon Inc, 1983, 4th edition. D.A. McQuarrie and J. D. Simon, Physical Chemistry, A Molecular
	Approach, Viva Books Pvt. Ltd, New Delhi, 2012.
	3. R. P. Rastogi & V. K. Srivastava, An Introduction to Quantum Mechanics
	of Chemical Systems, Oxford & IBH Publishing Co., New Delhi, 1999.
	4. R.L. Flurry. Jr, Symmetry Group Theory and Chemical applications,
	Prentice Hall. Inc, 1980
	5. J. M. Hollas, Symmetry in Molecules, Chapman and Hall, London, 2011,
Website and	Reprint. 1. https://nptel.ac.in/courses/104101124
e-learning source	2. https://ipc.iisc.ac.in/~kls/teaching.html
c-icai iiiig soui ce	2. https://ipe.nsc.ac.ht/~kis/teaching.html

Students will be able:

CO1: To discuss the characteristics of wave functions and symmetry functions.

CO2: To classify the symmetry operation and wave equations.

CO3: To apply the concept of quantum mechanics and group theory to predict the electronic structure.

CO4: To specify the appropriate irreducible representations for theoretical applications.

CO5: To develop skills in evaluating the energies of molecular spectra.

CO-PO Mapping (Course Articulation Matrix) PO₂ PO9 PO₁ PO3 **PO4 PO5 PO6 PO7 PO8 PO10 CO** 1 \mathbf{S} \mathbf{S} \mathbf{S} \mathbf{S} M \mathbf{S} \mathbf{S} \mathbf{S} M \mathbf{S} CO 2 S M S S S S S M S \mathbf{S} **CO 3** S S M S S S S M S S **CO 4** M S S S S M S S S S **CO 5** M M M M

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	CHEMISTRY	OF NATURA	AL PR	RODUCTS					
Paper No.	DSE- 6A								
	DSEC DSEC	Year	II	Credits	4	Course	23MCH4E1		
Category	DSEC	Semester	IV	Credits	4	Code	25101011411		
T / / 1	T 4			D 4:					
Instructional	Lecture	Tutorial	Lab	Practice		Total			
hours per week	3	1	-			4			
Prerequisites		lge of general cl		<u> </u>					
Objectives of thecourse	products. To explain var hormones. To understand To elucidate th To extract and methods.	To explain various of functions of carbohydrates, proteins, nucleic acids, steroids and hormones. To understand the functions of alkaloids and terpenoids. To elucidate the structure determination of biomolecules and natural products. To extract and construct the structure of new alkaloids and terpenoids from different							
UNIT-I:	ofalkaloids. Cl methods of str	Alkaloids: Introduction, occurrence, classification, isolation and functions of alkaloids. Classification, general methods of structural elucidation. Chemical methods of structure determination of Coniine, Piperine, Nicotine, Papaverine. Atropine, Quinine, Belladine, Cocaine, Heptaphylline, Papaverine and Morphine.							
UNIT-II:	Terpenoids: Introduction, occurrence, Isoprene rule, classification. General methods of determiningstructure Structure determination of Camphor, Abietic acid, Cadinene, Squalene, Zingiberine. Carotenoids: Introduction, geometricalisomerism, Structure, functions and synthesis of β-carotene and vitamin-A.								
UNIT-III:	structure andde and determina Structure deter	general method etermination. Faction of flavone mination and in	ds of lavone andf aporta	es: Biologica lavonoids. (nce.	antho Il imp Querc	cyanines. Cya ortance of flav etin:	coanthocyanines. inidine chloride: vones. Structure		
UNIT-IV:	Classification and synthesis nomenclature, classification, sterols, choles	and spectral proof Uric acid and configuration	roperti l Caffo of sub carbon e, test	es of steroid eine. Steroid estituents, D , biological s, physiolog	ds. bio s: Ste piels' l imp	ological imporroids-Introduc hydrocarbon, ortance, colo	ion of purines. rtance, Structure rtion, occurrence, stereochemistry, ur reactions of		
UNIT-V:							roperties, colour n andalizarin.		
Extended Profession al Component (is a	and constitution. Structural determination and synthesis of indigoitin andalizarin. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)								
part of internal component only, Not to be included in the external examination question paper)									

Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,								
from this course	Professional Communication and Transferable skills.								
Recommended	1. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 1,								
Text	HimalayaPublishing House, Mumbai, 2009.								
	2. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 2,								
	HimalayaPublishing House, Mumbai,2009.								
	3. O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 1,								
	Goel Publishing House, Meerut, 1997.								
	4. O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 2,								
	Goel Publishing House, Meerut, 1997.								
	5. I. L. Finar, Organic Chemistry Vol-2, 5 th edition, Pearson Education								
	Asia,1975.								
Reference	I. L. Finar, Organic Chemistry Vol-1, 6 th edition, Pearson								
Books	EducationAsia,2004.								
	1. Pelletier, Chemistry of Alkaloids, Van Nostrand								
	Reinhold Co,2000.								
	2. Shoppe, Chemistry of the steroids, Butterworthes, 1994.								
	3. I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal &								
	aromaticplants, Vol 1 and Vol 10, Ukkaz Publications, Hyderabad, 2004.								
Website and	https://sites.google.com/site/chemistryebookscollection02/home/organic-								
e-learning	chemistry/organic								
source									

Students will be able:

CO1: To understand the biological importance of chemistry of natural products.

CO2: To scientifically plan and perform the isolation and characterization of synthesized natural products.

CO3: To elucidate the structure of alkaloids, terpenoids, carotenoids, falvanoids and anthocyanins.

CO4: To determine the structure of phytochemical constituents by chemical and physical methods.

CO5: To interpret the experimental data scientifically to improve biological activity of active components.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	POLYMER	CHEMISTRY	7							
Course										
Paper No.	DSEC6 B									
Category	DSEC	Year	II	Credits	4	Course	23MCH4E2			
		Semester	IV			Code				
Instructional	Lecture	Tutorial	Lab	Practice Total						
hours per	3	1	-			4				
week										
Prerequisites	Basic knowledge of general chemistry									
Objectives of		basic concepts a								
the course	_	arious types of p					1			
		nd the important				and their synt	hetic uses.			
		e the molecular	_			viti og				
UNIT-I:		ne degradation o					n: Primary and			
UNII-I;		•		_			tructure, chemical			
	1	•	•				Determination of			
		-	-			-	(M_n) and Weight			
					_		` ′			
	average molecular mass (M _w) ofpolymers. Molecular weight determination of high polymers by physical and methods.									
UNIT-II:	1 .				ain gr	owth nolvme	rization: Cationic,			
			•		tereo		olymers: Ziegler			
	Nattapolyme	rization. Reacti	•				•			
	polymerizati	on.								
UNIT-III:							lution, Emulsion,			
							ypes of Polymer			
	_	, Thermal degra			_					
TIMITE IX	-	ation, Photostab								
UNIT-IV:	IndustrialPolymers: Preparation of fibre forming polymers, elastomericmaterial. Thermoplastics:Polyethylene,Polypropylene,polystyrene,Polyacrylonitrile,PolyVinyl									
		• •					nosetting Plastics:			
		*	-	-			ober and synthetic			
		-	_				Elementary ideas;			
				_		-	nd polyacetylene.			
		nethacrylate, po			_					
		and polypropyl								
UNIT-V:	-	cessing: Comp		-			ers, Plasticizers,			
	antioxidants,					sand colour	•			
	_	_					jection moulding,			
	blow moulding andreinforcing. Film casting, Thermofoaming, Foaming. Catalysis and catalysts – Polymerization catalysis, catalyst support, clay compounds, basic									
	catalyst, auto-exhaust catalysis, vanadium, heterogeneous catalysis and active centres.									
Extended	· · · · · · · · · · · · · · · · · · ·						minations UPSC			
Professional	/ TRB / NET	/ UGC-CSIR / O	GATE	/TNPSC oth	ers to	be solved				
Component (is	(To be discu	ssed during the	Tutori	al hours)						
a part of										

internal	
component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this	Professional Communication and Transferable skills.
course	
Recommended	V.R. Gowariker, <i>Polymer Science</i> , Wiley Eastern, 1995.
Text	G.S. Misra, Introductory Polymer Chemistry, New Age International (Pvt)
	Limited,1996.
	M.S. Bhatnagar, A Text Book of Polymers, vol-I & II, S.Chand & Company,
	New Delhi, 2004.
Reference	F. N. Billmeyer, <i>Textbook of Polymer Science</i> , Wiley Interscience,1971.
Books	A. Kumar and S. K. Gupta, Fundamentals and Polymer Science and Engineering,
	Tata McGraw-Hill,1978.

Students will be able:

CO1: To understand the bonding in polymers.

CO2: To scientifically plan and perform the various polymerization reactions.

CO3: To observe and record the processing of polymers.

CO4: To calculate the molecular weight by physical and chemical methods.

CO5: To interpret the experimental data scientifically to improve the quality of synthetic polymers.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	CHEMIST	TRY FOR AD	VANC	ED RESEA	RCH	STUDIES			
Course									
Paper No.	SEC3			1					
Category	SEC	Year	II	Credits	2	Course	23MCH4S		
		Semester	IV			Code			
Instructional	Lecture	Tutorial	Lab	Practice		Total	Total		
hours per week	3	1	- 4						
Prerequisites	Basic know	ledge about R	esearcl	1					
Objectives of the		funtamentals							
course		Literature sur					1.		
	research	and the importa	ance of	Research e	thics,	plagiarism an	id impact of		
		e Technical wri	iting an	d reporting	of rese	earch			
		out the Project					ev		
UNIT-I:.		tals of researc				8 8	<u>, </u>		
	Meaning ar	nd Objective of	f resear	ch- Types o	f Res	earch(bscic, a	pplied and pate		
	oriented), o	defining resear	rch pro	blem- resea	rch p	process and s	steps involved		
	research pro	ocess- research	propos	sal or synops	is.				
UNIT-II:	Literature	survey and do	cumer	ntation					
	Methods of	f literature sur	vey- u	se of library	bool	ks, journals,	e-journals, thes		
		•					tation technique		
			_	- '			s scientific searc		
		online servers		-			1		
UNIT-III:		thics, plagiari					1 41:		
		_	-		-		earchers- ethica		
		on during anin and use of plag	_			-	A guidelines-		
UNIT-IV:		writing and re				<u>-</u>			
UNII-IV.						research pape	er, review articl		
	, · ·	•					etc- structure a		
				_			, introductio		
							ement, reference		
	footnotes, t	ables and illus	stration	s. Use of re	feren	ce managing	softwares (such		
		EY, ENDNOT	E), Im	pact factor	, rati	ng, indexing	and citation		
***********	journals								
UNIT-V:		st managemen			-	marry mantani	ala maaadum		
		tion and biolog			a on	Taw Illateria	als, procedure		
			_	•	encies	such as DS	Γ, DBT, AICTI		
					•		unction in Indi		
Extended		esearch project					evaminations		
Professional	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved								
Component (is a		ussed during th			.150	omers to be s	01100		
part of internal	(10 be disc	abbea during ii	io ruio	i iui iiouisj					
component only,									
Not to be									
included in the									
external									
examination									
CAGIIIIIauuii	I								

question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this course	Professional Communication and Transferable skills.
Recommended	Dr. Shanti Bhushan Mishra, Dr.Shashi Alok , Handbook of research
Text	Methodology, Educreation publishing,
Reference Books	C.R. Kothari, Gaurav Garg, Research Methodology, New Age International
	Publishers

Students will be able:

CO1: To understand funtamentals of Research

CO2: Learn about the Literature survey and documentation

CO3: To To understand the importance of Research ethics, plagiarism and impact of researchCO4: To learn the Technical writing and reporting of research

CO5: To learn about the Project Cost management and Funding Agency

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low